Download presentation
Presentation is loading. Please wait.
Published byCamilla Mitchell Modified over 9 years ago
1
1 RTI International is a trade name of Research Triangle Institute 3040 Cornwallis Road ■ P.O. Box 12194 ■ Research Triangle Park, North Carolina, USA 27709 Phone 919-316-3537e-mail bbergenroth@rti.org Google Earth and Statistical Trends Analysis Tools Brandon Bergenroth, Jay Rineer, Breda Munoz and William Cooter (RTI) Dwane Young (EPA OW) Dwight Atkinson (EPA OW/AWPD)
2
2 Statistical Trend Analysis for STORET DATA
3
3 New STORET Tools (Services) Simplify Pulling Data for Trend Analysis Trends analysis helps identify degradation trends for waters that warrant protection to avoid 303(d) listing Trend analysis also help document incremental improvements showing progress in restoring impaired waters
4
4 Seasonal Kendall tests a common tool to help confirm apparent trend patterns Seasonal Kendall tests favored by the USGS, EPA ORD, and many university researchers Valuable where parameter show variability related to seasonal changes in temperature or changes in flows Can accommodate some degree of “censored observations (below detection limits or missing values)
5
5 Trend analysis functions/modules similar to ESTREND (USGS) and Kendall (S-PLUS) already implemented in the open source R.
6
6 R is supported by EPA through EMAP and through initiatives such as NCEA’s CADDIS
7
7 R-based Trend Analysis using STORET river/stream station data Scatter plots for data series of conventional and toxic parameters Seasonal Kendall test can be used to assess seasonal trends
8
8 Non Parametric Statistic Tests Non parametric statistic tests refer to the collection of statistic tests that do not require any assumption on the distribution of the data. They are also known in the statistic literature as distribution free tests and distribution independent tests. Furthermore, non parametric tests have few underlying assumptions and tend to concentrate in the relative values (e.g. ranks) of the observations instead of the magnitude of the observations. Most non parametric tests were designed to assess the presence or absence of a given statistic characteristic (e.g. trend) and therefore do not provide the magnitude of the statistic characteristic of interest. For this reason, some researchers classify them as exploratory data procedures. They are often used in hypothesis testing (e.g. existence of trends) and therefore considered as confirmatory data analysis tools.
9
9 MannKendall Let: be a sequence of measurements over time, to test the null hypothesis, : come from a population where the random variables are independent and identically distributed, : follow a monotonic (e.g. increasing or decreasing) trend over time. The Mann-Kendall test statistic is calculated as where S is asymptotically normally distributed. The mean and variance of S are given by where p is the number of tied groups in the data set and is the number of data points in the jth tied group.
10
10 MannKendall A positive value of S indicates that there is an upward (increasing) trend (e.g. observations increase with time). A negative value of S means that there is a downward (decreasing) trend. If S is significantly different from zero, then based on the data can be rejected at a pre-selected significance level and the existence of a monotonic trend can be accepted. Note that S is a count of the number of times for j k, more than. The maximum value of S (called it D) occurs when. Kendall’s tau is defined as where
11
11 MannKendall The distribution of Kendall’s tau can be easily obtained from the distribution of S. A positive value of tau indicates that there is an upward (increasing) trend (e.g. observations increase with time). A negative value of tau means that there is a downward (decreasing) trend. If tau is significantly different from zero (e.g. value less than 0.05 at the 5% significance level or less than 0.01 at the 1% significance level), then based on the data, can be rejected at a pre-selected significance level (e.g. alpha = 5%) and the existence of a monotonic trend can be accepted. Note that the test only allows the software user to conclude about the existence not about the magnitude of the trend.
12
12 Getting Results Using STORET Data Warehouse STORET Station Descriptions Stations by Geographic Location http://iaspub.epa.gov/stormoda/DW_stationcriteria http://iaspub.epa.gov/stormoda/DW_stationcriteria Stations by Organization and Station ID http://iaspub.epa.gov/stormoda/DW_stationcriteria_STN http://iaspub.epa.gov/stormoda/DW_stationcriteria_STN
13
13 Visualizing Results Transform text results to KML Keyhole Markup Language (KML) is an XML based language for describing three-dimensional geospatial data and its display in application programs. http://code.google.com/apis/kml/documentation KML is supported in GoogleEarth, GoogleMaps and Microsoft VirtualEarth
14
14 Visualizing Results
15
15 Visualizing Results
16
16 Report Results http://iaspub.epa.gov/storpubl/storet_wme_pkg.Display_Station?p_station_id=SP-64&p_org_id=MWRD
17
17 Report Results http://iaspub.epa.gov/stormoda/DW_resultcriteria_station http://iaspub.epa.gov/webservices/StoretResultService/index.html?operation=getResults
18
18 Kendall Trend Analysis for pH
19
19 Kendall Trend Analysis for Temperature
20
20 Kendall Trend Analysis for Dissolved Oxygen
21
21 Kendall Trend Analysis for Total Suspended Solids
22
22 Kendall Trend Analysis for Turbidity
23
23 Kendall Trend Analysis for Cadmium
24
24 Kendall Trend Analysis for Zinc
25
25 Indexing STORET stations to the NHD can help increase sophistication of trend analyses Group sites relative to upstream NPDES discharges Group using Horton- Strahler stream orders Group in terms of landcover patterns using NHDPlus LU/LC raster data
26
26 Indexing and combining station results
27
27 Next Steps Additional work on “pre-processing” STORET station data to focus attention on stations with enough “data density” to support trend analyses Develop a “data mart” of R trend analysis results – including saved images of scatter plots over time from R Consider ways trend analyses can support either pro-active study of anti-degradation effects [Goal: detect degradation trend early on and consider management steps to avoid winding up with additional 303(d) lists] Also – use trend analyses as a tool to document incremental progress in meeting targets established under WQ Standards or the TMDL program
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.