Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 7 th IEEE International Conference on Mobile Ad-hoc and Sensor Systems IEEE MASS 2010 San Francisco, CA (United States), November 8 – 12, 2010 Optimization.

Similar presentations


Presentation on theme: "1 7 th IEEE International Conference on Mobile Ad-hoc and Sensor Systems IEEE MASS 2010 San Francisco, CA (United States), November 8 – 12, 2010 Optimization."— Presentation transcript:

1 1 7 th IEEE International Conference on Mobile Ad-hoc and Sensor Systems IEEE MASS 2010 San Francisco, CA (United States), November 8 – 12, 2010 Optimization of Critical Data Synchronization via Link Overlay RNG in Mobile Ad hoc Networks Emmanuel BaccelliJuan Antonio CorderoPhilippe Jacquet Équipe Hipercom, INRIA Saclay (France) MASS

2 2 Agenda Optimization of Critical Data Synchronization via Link Overlay RNG in Mobile Ad hoc Networks IEEE MASS 2010  Rationale  Our Proposal: SLO-T  An SLO-T Overlay Example  SLO-T Analysis  Application: SLO-T in OSPF  Rationale

3 3 Rationale (1) Reliable communication of critical data in MANETs Synchronized Overlay Optimization of Critical Data Synchronization via Link Overlay RNG in Mobile Ad hoc Networks IEEE MASS 2010

4 4  MANET link synchronization is costly  Overlay requirements:  Low overlay density  Low overlay link change rate Rationale (and 2) Optimization of Critical Data Synchronization via Link Overlay RNG in Mobile Ad hoc Networks IEEE MASS 2010

5 5 Agenda  Rationale  Our Proposal: SLO-T  An SLO-T Overlay Example  SLO-T Analysis  Application: SLO-T in OSPF Optimization of Critical Data Synchronization via Link Overlay RNG in Mobile Ad hoc Networks IEEE MASS 2010

6 6 Our Proposal: SLO-T Synchronized Link Overlay – Triangular (SLOT) SLOT Uniform Costs SLOT Distance-based Costs Relative Neighborhood Graph (RNG) Optimization of Critical Data Synchronization via Link Overlay RNG in Mobile Ad hoc Networks IEEE MASS 2010

7 7 Our Proposal Relative Neighbor Graph (RNG)  Mathematical definition (Toussaint, 1980)  Intuitive definition Optimization of Critical Data Synchronization via Link Overlay RNG in Mobile Ad hoc Networks IEEE MASS 2010 uv

8 8 Distance-based cost (SLOT-D) C A B 3 5 4 C A B 3 5 4 Our Proposal Synchronized Link Overlay – Triangular (SLOT)  Mathematical definition  Intuitive definition SLOT-D SLOT-U Unit cost (SLOT-U) 13 42 37 13 42 37 Optimization of Critical Data Synchronization via Link Overlay RNG in Mobile Ad hoc Networks IEEE MASS 2010

9 9 Agenda  Rationale  Our Proposal: SLO-T  An SLO-T Overlay Example  SLO-T Analysis  Application: SLO-T in OSPF Optimization of Critical Data Synchronization via Link Overlay RNG in Mobile Ad hoc Networks IEEE MASS 2010

10 10 Synchronized Link Overlay – Triangular Example (1)  Network graph  N: 30 nodes  Grid: 400x400m  Radio range: 150 m Network link SLOT-U link SLOT-D link Optimization of Critical Data Synchronization via Link Overlay RNG in Mobile Ad hoc Networks IEEE MASS 2010

11 11 Synchronized Link Overlay – Triangular Example (2)  SLOT-U subgraph Network link SLOT-U link SLOT-D link Optimization of Critical Data Synchronization via Link Overlay RNG in Mobile Ad hoc Networks IEEE MASS 2010

12 12 Synchronized Link Overlay – Triangular Example (3)  SLOT-D subgraph Network link SLOT-U link SLOT-D link Optimization of Critical Data Synchronization via Link Overlay RNG in Mobile Ad hoc Networks IEEE MASS 2010

13 13 Synchronized Link Overlay – Triangular Example (and 4) Network link SLOT-U link SLOT-D link  SLOT-D subgraph (distance-based metrics) Optimization of Critical Data Synchronization via Link Overlay RNG in Mobile Ad hoc Networks IEEE MASS 2010

14 14 Agenda  Rationale  Our Proposal: SLO-T  An SLO-T Overlay Example  SLO-T Analysis  Application: SLO-T in OSPF Optimization of Critical Data Synchronization via Link Overlay RNG in Mobile Ad hoc Networks IEEE MASS 2010

15 15 Synchronized Link Overlay – Triangular Analytical Model  Graph model: Unit disk graph (UDG)  Speed: Constant node speed s  Node distribution:Uniform node density  Mobility: Independent, isotropic random walk Optimization of Critical Data Synchronization via Link Overlay RNG in Mobile Ad hoc Networks IEEE MASS 2010

16 16 Synchronized Link Overlay – Triangular Analysis 2D (1)  Avg. number of links per node All links SLOT-D SLOT-U  3,60 2,56 Optimization of Critical Data Synchronization via Link Overlay RNG in Mobile Ad hoc Networks IEEE MASS 2010

17 17 Synchronized Link Overlay – Triangular Analysis 2D (and 2)  Avg. rate of link creation All links SLOT-D SLOT-U for a fixed node speed s Optimization of Critical Data Synchronization via Link Overlay RNG in Mobile Ad hoc Networks IEEE MASS 2010

18 18 Synchronized Link Overlay – Triangular Analysis Summary Avg number of overlay links 2 2,56 2,94 2,77 3,60 2,50 Avg rate of link creation 2 2,73 1,02 2 3,60 1,44 dim 1 2 3 1 2 3 SLOT-D SLOT-U (  ) Optimization of Critical Data Synchronization via Link Overlay RNG in Mobile Ad hoc Networks IEEE MASS 2010

19 19 Agenda  Rationale  Our Proposal: SLO-T  An SLO-T Overlay Example  SLO-T Analysis  Application: SLO-T in OSPF Optimization of Critical Data Synchronization via Link Overlay RNG in Mobile Ad hoc Networks IEEE MASS 2010

20 20 Application: SLOT in OSPF  OSPF: Link-state routing protocol  MANET extension: RFC 5449  Components: Topology selection LSA flooding LSDB synchronization (Adjacencies) SLOT for Unit Cost (SLOT-U) 13 42 37 13 42 37 Optimization of Critical Data Synchronization via Link Overlay RNG in Mobile Ad hoc Networks IEEE MASS 2010

21 21 Application: SLOT in OSPF  Adjacencies (synchronized links) Optimization of Critical Data Synchronization via Link Overlay RNG in Mobile Ad hoc Networks IEEE MASS 2010

22 22 Application: SLOT in OSPF  Control Traffic Overhead Optimization of Critical Data Synchronization via Link Overlay RNG in Mobile Ad hoc Networks IEEE MASS 2010

23 23 Application: SLOT in OSPF  Data Delivery Ratio Optimization of Critical Data Synchronization via Link Overlay RNG in Mobile Ad hoc Networks IEEE MASS 2010

24 24 Conclusions & Future Work  Synchronized overlay requirements: low density / low link change rate  SLOT: number of overlay links/node is independent from density  SLOT-OSPF: overhead reduction leads to better behaviors in dense networks  SLOT-D better than SLOT-U (in terms of overlay size)  But requires a distance-based metric  factor in link formation rate Optimization of Critical Data Synchronization via Link Overlay RNG in Mobile Ad hoc Networks IEEE MASS 2010

25 25 Questions ? E-mail: cordero@lix.polytechnique.fr Optimization of Critical Data Synchronization via Link Overlay RNG in Mobile Ad hoc Networks IEEE MASS 2010

26 26 Backup Slides Optimization of Critical Data Synchronization via Link Overlay RNG in Mobile Ad hoc Networks IEEE MASS 2010

27 27 Impact of Distance in SLOT Link Selection Optimization of Critical Data Synchornization via Link Overlay RNG in Mobile Ad hoc Networks IEEE MASS 2010

28 28 Synchronized Link Overlay (SLO) Optimization of Critical Data Synchornization via Link Overlay RNG in Mobile Ad hoc Networks IEEE MASS 2010  Mathematical definition  Intuitive definition AB C1C1 C2C2 10 2 2 2

29 29 Analytical Model Formulae (1) Optimization of Critical Data Synchornization via Link Overlay RNG in Mobile Ad hoc Networks IEEE MASS 2010 SLOT with distance-based metrics

30 30 Analytical Model Formulae (2) SLOT with unit-cost metrics Optimization of Critical Data Synchornization via Link Overlay RNG in Mobile Ad hoc Networks IEEE MASS 2010

31 31 Analytical Model Formulae (and 3) Further details  E. Baccelli, J. A. Cordero, P. Jacquet: Optimization of Critical Data Synchronization via Link Overlay RNG in Mobile Ad Hoc Networks. INRIA Research Report RR-7272. April 2010. (publicly available in the Internet: http://hal.inria.fr/docs/00/47/96/89/PDF/RR-7272.pdf ) Optimization of Critical Data Synchornization via Link Overlay RNG in Mobile Ad hoc Networks IEEE MASS 2010

32 32 The SLO-T Algorithm Relative Neighbor Graph (RNG) AB C1 C2 C3 Synchronized Link Overlay, Triangle elimination AB C SLO-T (unit cost) 13 42 37 Optimization of Critical Data Synchornization via Link Overlay RNG in Mobile Ad hoc Networks IEEE MASS 2010

33 33 Documentation of OSPF MANET Extensions  Simulations run over the Georgia Tech Network Simulator (GTNetS)  Implementation based on the Quagga/Zebra OSPFv3 daemon (ospf6d)  Source code for OSPF MANET extensions  Following the IETF RFC 5449 “OSPF Multipoint Relay (MPR) Extension for Ad Hoc Networks” from E. Baccelli, P. Jacquet, D. Nguyen and T. Clausen  SLO-T mechanism following the INRIA Research Report n. 6148, by P. Jacquet.  Implementation provided by INRIA, publicly available in www.emmanuelbaccelli.org/ospf Optimization of Critical Data Synchornization via Link Overlay RNG in Mobile Ad hoc Networks IEEE MASS 2010

34 34 Simulation Environment General Simulation Parameters  20 samples/experiment  Data traffic pattern  Constant Bit Rate UDP flow  Packet size:1472 bytes  Packet rate: 85 pkts/sec  Scenario  Square grid  Grid size: 400x400 m  Node configuration  Radio range:150 m  MAC protocol:IEEE 802.11b  Node mobility  Random waypoint model  Pause: 40 sec  Speed: 0, 5, 10, 15 m/s (constant)‏ Performed Experiments  Fixed size grid OSPF Configuration  Standard Parameters  HelloInterval: 2 sec  DeadInterval: 6 sec  RxmtInterval: 5 sec  MinLSInterval: 5 sec  MinLSArrival: 1 sec  RFC 5449  AckInterval:1,8 sec  Adj. persistency:Disabled  SLOT-OSPF  AckInterval:1,8 sec Optimization of Critical Data Synchornization via Link Overlay RNG in Mobile Ad hoc Networks IEEE MASS 2010

35 35 The α parameter Optimization of Critical Data Synchornization via Link Overlay RNG in Mobile Ad hoc Networks IEEE MASS 2010


Download ppt "1 7 th IEEE International Conference on Mobile Ad-hoc and Sensor Systems IEEE MASS 2010 San Francisco, CA (United States), November 8 – 12, 2010 Optimization."

Similar presentations


Ads by Google