Download presentation
Presentation is loading. Please wait.
Published byDiana O’Neal’ Modified over 9 years ago
2
A. Ramšak* J. Mravlje T. Rejec* R. Žitko J. Bonča* The Kondo effect in multiple quantum dot systems and deformable molecules http://gawain.elte.hu/mcrtn/ Department of Physics Faculty of Mathematics and Physics University of Ljubljana *
3
Outline (1) Conductance (2) Kondo in a single quantum dot (3) Methods (4) Double quantum dots (5) Triple quantum dots (6) Deformable molecules (7) Center-of-mass motion (8) Summary
4
Conductance
5
Conductance
6
Non-interacting systems : U=0
8
The Anderson model : U > 0
12
The Kondo effect in a quantum dot
30
1 “Ring system”
31
“Open system”
33
the GS energy of a large ring system is an universal function of flux the GS energy of a large ring system is an universal function of flux T. Rejec and A. Ramšak, PRB 68, 033306 (2003); 68 035342 (2003) IF open system is Fermi liquid IF open system is Fermi liquid
37
Linear conductance from the ground-state energy See also: J. Favand and F. Mila (Phys. J. 1998); O. Sushkov (PRB 2001); R. Molina et al. (PRB 2003)
38
Linear conductance from the ground-state energy
40
Aharonov – Bohm rings Broken time-reversal symmetry T. Rejec and A. Ramšak, PRB 68, 033306 (2003)
41
The Kondo effect in a quantum dot U=0 numerical tests…
42
The Kondo effect in a quantum dot: finite temperature U=0 high T low T
43
The Kondo effect in a quantum dot: finite temperature high T low T
44
The Kondo effect in a quantum dot: finite temperature high T low T
45
Fingerprints of Kondo…
49
Chan et al, Nanotechnology 15, 609 (2004) Vidan et al, Applied Phys. Lett. 85, 3602 (2004) Electrostatic gates QD Elzerman et al, PRB 67, 16308 (2003) QD Multiple quantum dot systems
50
Double quantum dot
54
J. Mravlje, A. Ramšak, and T. Rejec, Phys. Rev. B 73, 241305(R) (2006)
56
Double quantum dot 2 Kondo AFM 1 Kondo t t
57
Double quantum dot 2 Kondo AFM 1 Kondo t t
58
Double quantum dot 2 Kondo AFM 1 Kondo t t
59
Other topologies: local singlet vs the Kondo effect A.Ramšak, J. Mravlje, R. Žitko, and J. Bonča, quant-ph/0608065.
60
Thermal equilibrium: A-B spin corelations
61
Zero magnetic field, thermal equilibrium A B
62
Zero magnetic field, temperature A B
63
A B
64
A B
65
A B
66
Triple quantum dot
77
Deformable molecules e
78
e
79
H. Park et al. Nature 407 (2000) e Change in: local energy hopping matrix elements
80
…
81
Modeling
82
Isolated molecule: molecule attached to the leads: Lang & Firsov transformation: the result: Reduction of U and narrowing of the level-width A.C. Hewson and D.M. News J.Phys C 13 (1980) K. Schönhammer and O. Gunnarsson PRB 30 (1984) Old knowledge …
83
decrease negative U: A.Taraphder and P. Coleman, PRL 66, 2814 (1991).
84
J. Mravlje, A. Ramšak, and T. Rejec, PRB 72, 121403(R) (2005); See also: P.S. Cornaglia, D.R. Grempel, and H. Ness, Phys. Rev. B 71, 075320 (2005), A. Mitra, I. Aleiner, and A.J. Millis, Phys. Rev. B 79, 245302 (2004).
85
Molecules with a center of mass motion J. Mravlje, A. Ramšak, and T. Rejec, submitted to PRB
86
Molecules with a center of mass motion
89
Friedel sum rule:
90
Molecules with a center of mass motion Friedel sum rule:
91
Molecules with a center of mass motion A B
94
Summary Linear conductance at T=0 can then be extracted from the GS energy: The Kondo effect: Low temperature destiny of quantum dots
95
ad summary…
96
Formulae are exact IF the system is Fermi liquid note: linear conductance zero temperature non-interacting single-channel leads
97
Fisher – Lee relation … Conductance formalisms non-equilibrium transport: T ≠ 0, V ≠ 0 U = 0 Landauer – Büttiker formula linear response regime: T ≠ 0, V ~ 0zero-temperature linear response: T = 0, V ~ 0 U ≠ 0 Meir – Wingreen formula In Fermi liquid systems Kubo formula
98
Proof of the method Step 1. Conductance of a Fermi liquid system at T=0 Kubo T=0 define (n.i.: Fisher-Lee) ‘Landauer’
99
Step 2. Quasiparticle hamiltonian (Landau Fermi liquid)
100
Step 3. Quasiparticles in a finite system N
101
Step 4. Validity of the conductance formulas
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.