Download presentation
Presentation is loading. Please wait.
Published byBethanie Maxwell Modified over 9 years ago
1
XMSS - A Practical Forward Secure Signature Scheme based on Minimal Security Assumptions J. Buchmann, E. Dahmen, A. Hülsing 02.12.2011 | TU Darmstadt | A. Huelsing | 1
2
Digital Signature Schemes 02.12.2011 | TU Darmstadt | A. Huelsing | 2
3
RSA – DSA – EC-DSA - … 02.12.2011 | TU Darmstadt | A. Huelsing | 3 Trapdoor one- way function Digital signature scheme Collision resistant hash function RSA, DH, SVP, MQ, …
4
Digital Signature Schemes -Strong complexity theoretic assumption (Trapdoor one-way function) hard to fulfill -Specific hardness assumptions Quantum computers, new algorithms + efficient but mostly in ROM 02.12.2011 | TU Darmstadt | A. Huelsing | 4
5
The eXtended Merkle Signature Scheme XMSS 02.12.2011 | TU Darmstadt | A.Huelsing | 5
6
The eXtended Merkle Signature Scheme (XMSS) Minimal complexity theoretic assumptions Generic construction (No specific hardness assumption) Efficient (comparable to RSA) Forward secure 02.12.2011 | TU Darmstadt | A. Huelsing | 6
7
02.12.2011 | TU Darmstadt | A. Huelsing | 7 Target-collision resistant HFF One-way FF XMSS Pseudorandom FF Second-preimage resistant HFF Minimal complexity theoretic assumptions Naor, Yung 1989 Rompel 1990 Håstad, Impagliazzo, Levin, Luby 1999 Goldreich, Goldwasser, Micali 1986 Digital signature scheme Rompel 1990 Existential unforgable under chosen message attacks
8
Output length of hash functions Hash function h:{0,1}* → {0,1} m Assume: - only generic attacks, - security level n Collision resistance required: → generic attack = birthday attack → m = 2n Second-preimage resistance required: → generic attack = exhaustive search → m = n 02.12.2011 | TU Darmstadt | A. Huelsing | 8
9
Forward Secure Digital Signatures 02.12.2011 | TU Darmstadt | A. Huelsing | 9 time classical pk sk Key gen. forward sec pk sk sk 1 sk 2 sk i sk T t1t1 t2t2 titi tTtT
10
Construction 02.12.2011 | TU Darmstadt | A. Huelsing | 10
11
XMSS – Winternitz OTS [Buchmann et al. 2011] - Uses pseudorandom function family - Winternitz parameter w, message length m, random value x 02.12.2011 | TU Darmstadt | A. Huelsing | 11 sk 1 pk 1 x sk l pk l x w l
12
For multiple signatures use many key pairs. Generated using pseudorandom generator (PRG), build using PRFF F n : Secret key: Random SEED for pseudorandom generation of current signature key. XMSS – secret key 02.12.2011 | TU Darmstadt | A. Huelsing | 12 PRG
13
02.12.2011 | TU Darmstadt | A. Huelsing | 13 = (, b 0, b 1, b 2, h) XMSS – public key b0b0 b0b0 b0b0 b0b0 b1b1 b1b1 bhbh Modified Merkle Tree [Dahmen et al 2008] h second preimage resistant hash function Public key
14
XMSS signature 02.12.2011 | TU Darmstadt | A. Huelsing | 14 i i Signature = (i,,,,) b0b0 b0b0 b0b0 b0b0 b1b1 b1b1 b2b2
15
XMSS forward secure 02.12.2011 | TU Darmstadt | A. Huelsing | 15 FSPRG PRG FSPRG: Forward secure PRG using PRFF F n
16
Security Proof - Idea Tree construction and W-OTS are provably secure. Given Adversary A against pseudorandom Scheme can be used against the random scheme. → Inputs are the same Input distribution differs → We can bound success probability against random scheme We can use A to distinguish PRG See full version on iacr eprint (report 2011/484) 02.12.2011 | TU Darmstadt | A.Huelsing | 16
17
XMSS in practice 02.12.2011 | TU Darmstadt | A.Huelsing | 17
18
02.12.2011 | TU Darmstadt | A. Huelsing | 18 Cryptographic HFF XMSS Pseudorandom FF Second-preimage resistant HFF XMSS - Instantiations Trapdoor one- way function DL RSA MP-Sign Trapdoor one- way function DL RSA MP-Sign Block Cipher
19
AES Blowfish 3DES Twofish Threefish Serpent IDEA RC5 RC6 … 02.12.2011 | TU Darmstadt | A. Huelsing | 19 Hash functions & Blockciphers SHA-2 BLAKE Grøstl JH Keccak Skein VSH SWIFFTX RFSB …
20
XMSS Implementations C Implementation, using OpenSSL Sign (ms) Verify (ms) Signature (bit) Public Key (bit) Secret Key (byte) Bit Security Comment XMSS-SHA-215.171.0216,66413,568280146H = 20, w = 64 XMSS-SHA-233.472.3415,38413,568280100H = 20, w = 108 XMSS-AES-NI1.720.1119,6087,29615282H = 20, w = 4 XMSS-AES2.870.2219,6087,29615282H = 20, w = 4 MSS-SPR (n=128) --68,0967,680-98H = 20 RSA 20483.080.09≤ 2,048≤ 4,096 87 Intel(R) Core(TM) i5 CPU M540 @ 2.53GHz with Intel AES-NI 02.12.2011 | TU Darmstadt | A. Huelsing | 20
21
Conclusion 02.12.2011 | TU Darmstadt | A.Huelsing | 21
22
XMSS … needs minimal security assumptions … is forward secure … can be used with any hash function or block cipher … performance is comparable to RSA, DSA, ECDSA … 02.12.2011 | TU Darmstadt | A.Huelsing | 22
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.