Download presentation
1
Model Checking and Related Techniques
Liu Yang
2
Outline Model Checking Techniques Tackle the State Space Explosion
Introduction to MC Symbolic Model Checking Bounded Model Checking Explicit Model Checking Tackle the State Space Explosion Partial Order Reduction Compositional Reasoning Abstraction Symmetry PAT: Process Analysis Toolkit Performance Comparison Conclusion
3
Model Checking Introduction
Model Checking is to exhaustively explore all reachable states of a finite state machine so as to tell whether a desired property is guaranteed or not. Advantages over traditional system validation approaches based on simulation, testing and deductive reasoning An automatic technique for verifying finite state concurrent systems Process: modeling, specification and verification Main challenge: state space explosion problem An automatic technique for verifying finite state concurrent systems, where the Counterexamples can be generated if the property is false.
4
Model Checking √ ? System design or code Requirements abstract manual
Finite state model M Set of logical properties for each property φ automatic Model checker M |= φ ? Yes No √ ?
5
Model of Concurrent Systems
(Unwind State Graph to obtain Infinite Tree)
6
Model of Concurrent Systems (Cont.)
Formally, a Kripke structure is a triple M <S,R,L>, where
7
Temporal logics Temporal logics may differ according to how they handle branching in the underlying computation tree. In a linear temporal logic (LTL), operators are provided for describing events along a single computation path. In a Computation Tree Logics (CTL) the temporal operators quantify over the paths that are possible from a given state.
8
Temporal logics Formulas are constructed from path quantifiers and temporal operators: Path quantifier: A: for every path E: there exists a path Linear Temporal Operator: Xp: p holds next time Fp: p holds sometime in the future () Gp: p holds globally in the future () pUq: p holds until q holds In LTL, only linear temporal operators are allowed. In CTL, each temporal operator must be immediately preceded by a path quantifier. In CLT*, a path quantifier can prefix an assertion composed of arbitrary combinations of the usual linear-time operators.
9
CTL Examples The four most widely used CTL operators are illustrated.
Each computation tree has initial state s0 as its root. EF(Started ^ :Ready): it is possible to get to a state where Started holds but Ready does not hold. AG(Req ) AFAck): if a Request occurs, then it will be eventually Acknowledged. AG(AF DeviceEnabled): DeviceEnabled holds infinitely often on every computation path. AG(EF Restart): from any state it is possible to get to the Restart state.
10
Fixpoint Algorithms Key properties of EFp:
Efficient model checking algorithms exist for CTL.
11
Model Checking Problem
Let M be the state-transition graph obtained from the concurrent system. Let f be the specification expressed in temporal logic. M, s |= f and check if initial states are among these.
12
Symbolic Model Checking
Method used by most “industrial strength” model checkers: uses Boolean encoding for state machine and sets of states. can handle much larger designs – hundreds of state variables. BDDs traditionally used to represent Boolean functions.
13
Symbolic Model Checking with BDDs
Ken McMillan implemented a version of the CTL model checking algorithm using Binary Decision Diagrams in 1987. Carl Pixley independently developed a similar algorithm, as did the French researchers, Coudert and Madre. BDDs enabled handling much larger concurrent systems. (usually, an order of magnitude increase in hardware latches!)
14
Ordered Binary Decision Trees and Diagrams
Ordered Binary Decision Tree for the two-bit comparator, given by the formula
15
OBDD for Comparator Example
If we use the ordering a1 < b1 < a2 < b2 for the comparator function, we obtain the OBDD below:
16
Variable Ordering Problem
The size of an OBDD depends critically on the variable ordering. If we use the ordering a1 < a2 < b1 < b2 for the comparator function, we get the OBDD below: Moreover, there are boolean functions that have exponential size OBDDs for any variable ordering.
17
Symbolic Model Checking Algorithm
How to represent state-transition graphs with Ordered Binary Decision Diagrams: Assume that system behavior is determined by n Boolean state variables v1, v2, … , vn. The Transition relation T will be given as a boolean formula in terms of the state variables: where v1,…, vn represents the current state and v’1,…, v’n represents the next state. Now convert T to a OBDD!!
18
Symbolic Model Checking (cont.)
Representing transition relations symbolically: Boolean formula for transition relation: Now, represent as an OBDD!
19
Symbolic Model Checking (cont.)
How to evaluate fixpoint formulas using OBDDs: Introduce state variables: Now, compute the sequence until convergence.
20
Problems with BDDs BDDs are a canonical representation. Often become too large. Selecting right variable ordering very important for obtaining small BDDs. Often time consuming or needs manual intervention. Sometimes, no space efficient variable ordering exists. Next, we describe an alternative approach to symbolic model checking that uses SAT procedures.
21
Advantages of SAT Procedures
SAT procedures also operate on Boolean expressions but do not use canonical forms. Do not suffer from the potential space explosion of BDDs. Can handle functions with s to s of variables. Very efficient implementations available.
22
Bounded Model Checking
Bounded model checking uses a SAT procedure instead of BDDs. We construct Boolean formula that is satisfiable iff there is a specific finite path of length k in underlying machine. We look for longer and longer paths by incrementing the bound k. After some number of iterations, we may conclude no such path exists and specification holds. For example, to verify safety properties, number of iterations is bounded by diameter of finite state machine.
23
Main Advantages of SAT Approach
Bounded model checking works quickly. This is due to depth first nature of SAT search procedures. It finds finite paths of minimal length. This helps user understand the example more easily. It uses much less space than BDD based approaches. Does not need manually selected variable order or costly reordering. Default splitting heuristics usually sufficient.
24
NuSMV: A New Symbolic Model Verifier
Finite-state Systems described in a specialized language Specifications expressible in CTL, LTL Provides both BDD and SAT based model checking. Allow user specified variable ordering Uses a number of heuristics for achieving efficiency and control state explosion
25
NuSMV language by examples
One “main” module. Three portions of code, identified by VAR, ASSIGN, SPEC. VAR identifies a portion of code where variables are defined. ASSIGN identifies a portion of code where variables are initialised and evolution is described. SPEC defines properties to be verified.
26
Explicit Model Checking
Given a model M and an LTL formula All traces of M must satisfy If a trace of M does not satisfy Counterexample M is the set of traces of M is the set of traces that satisfy M Equivalently M ¬=
27
Büchi Automata Automaton which accepts infinite traces
A Büchi automaton is 4-tupleS, I,, F S is a finite set of states I S is a set of initial states S S is a transition relation F S is a set of accepting states An infinite sequence of states is accepted iff it contains accepting states infinitely often
28
Example 1=S0S1S2S2S2S2… 2=S0S1S2S1S2S1… 3=S0S1S2S1S1S1… S0 S1 S2
ACCEPTED 2=S0S1S2S1S2S1… ACCEPTED 3=S0S1S2S1S1S1… REJECTED
29
LTL and Büchi Automata LTL formula Büchi Automaton
Represents a set of infinite traces which satisfy such formula Büchi Automaton Accepts a set of infinite traces We can build an automaton which accepts all and only the infinite traces represented by an LTL formula
30
LTL Model Checking Given a model M and an LTL formula
Build the Buchi automaton B¬ Compute product of M and B¬ Each state of M is labeled with propositions Each state of B¬ is labeled with propositions Match states with the same labels The product accepts the traces of M that are also traces of B¬ (M ¬) If the product accepts any sequence We have found a counterexample Construct the product of the system and the Büchi automaton generated from the negation of the property and concludes with a counterexample as soon as a fair loop is discovered
31
Nested Depth First Search
The product is a Büchi automaton How do we find accepted sequences? Accepted sequences must contain a cycle In order to contain accepting states infinitely often We are interested only in cycles that contain at least an accepting state During depth first search start a second search when we are in an accepting states If we can reach the same state again we have a cycle (and a counterexample)
32
Example
33
Example
34
Nested Depth First Search
procedure DFS(s) visited = visited {s} for each successor s’ of s if s’ visited then DFS(s’) if s’ is accepting then DFS2(s’, s’) end if end for end procedure
35
Nested Depth First Search
procedure DFS2(s, seed) visited2 = visited2 {s} for each successor s’ of s if s’ = seed then return “Cycle Detect”; end if if s’ visited2 then DFS2(s’, seed) end for end procedure
36
Explicit Model Checking
Avoid to construct the entire state space of the modeled system, can be done On-the-Fly Some states are not generated in the product Counterexample can be found before searching all states Easy to optimize Better support for asynchronous composition.
37
SPIN Explicit State Model Checker Process Algebra
Asynchronous composition of independent processes Communication using channels and global variables Non-deterministic choices and interleavings Nested Depth First Search Uses a hashing function to store each state using only 2 bits (no guarantee of soundness) Partial Order Reduction
38
SPIN Example of Peterson’s Algorithm
bool turn, flag[2]; byte ncrit; active proctype user0() { again: flag[0] = 1; reach: turn = 0; cs: (flag[1 - 0] == 0 || turn == 1 - 0); ncrit++; ss: assert(ncrit == 1); /* critical section */ ncrit--; flag[0] = 0; goto again } active proctype user1() { again: flag[1] = 1; reach: turn = 1; cs: (flag[1 - 1] == 0 || turn == 1 - 1); ncrit++; assert(ncrit == 1); /* critical section */ ncrit--; flag[1] = 0; goto again }
39
Outline Model Checking Techniques Tackle the State Space Explosion
Introduction to MC Symbolic Model Checking Bounded Model Checking Explicit Model Checking Tackle the State Space Explosion Partial Order Reduction Compositional Reasoning Abstraction Symmetry PAT: Process Analysis Toolkit Performance Comparison Conclusion
40
Partial Order Reduction
The interleaving model for asynchronous systems allows concurrent events to be ordered arbitrarily. To avoid discriminating against any particular ordering, the events are interleaved in all possible ways. The ordering between independent transitions is largely meaningless!!
41
The State Explosion Problem
Allowing all possible orderings is a potential cause of the state explosion problem. To see this, consider n transitions that can be executed concurrently. In this case, there are n different orderings and 2n different states (one for each subset of the transitions). If the specification does not distinguish between these sequences, it is beneficial to consider only one with n + 1 states.
42
Partial Order Reduction
The partial order reduction is aimed at reducing the size of the state space that needs to be searched. It exploits the commutativity of concurrently executed transitions, which result in the same state. Thus, this reduction technique is best suited for asynchronous systems. (In synchronous systems, concurrent transitions are executed simultaneously rather than being interleaved.)
43
Partial Order Reduction (Cont.)
The method consists of constructing a reduced state graph. The full state graph, which may be too big to fit in memory, is never constructed. The behaviors of the reduced graph are a subset of the behaviors of the full state graph. The justification of the reduction method shows that the behaviors that are not present do not add any information.
44
Partial Order Reduction (Cont.)
The name partial order reduction comes from early versions of the algorithms that were based on the partial order model of program execution. However, the method can be described better as model checking using representatives, since the verification is performed using representatives from the equivalence classes of behaviors.
45
Compositional Reasoning
Big systems are composed by sub-processes running in parallel. The specifications for such systems can be decomposed into properties hold in the sub processes. Communication protocol: a sender, a network and a receiver. Assume-Guarantee Paradigm Verify each sub-process separately by adding assumptions on sub-process. Combine the assumed and guaranteed properties to shown the correctness of (|| sub-processes )
46
Abstraction Eliminate details irrelevant to the property
Obtain simple finite models sufficient to verify the property E.g., Infinite state ! Finite state approximation Disadvantage Loss of Precision: False positives/negatives Approaches: Cone of influence reduction Data abstraction
47
Cone of Influence Reduction
If f is an LTL formula that refers only to the variables in V, and C is the cone of influence of V, then <f, M> is satisfied if and only if <f, N> is satisfied, where N is the reduced model with respect to C.
48
Cone of Influence Reduction
Boolean v1, v2, v3, v4, v5, v6; Repeat forever in parallel: v1 = v2; v2 = v1 & v3; v3 = v1 & v2; v4 = v5 & v3; v5 = v4 & v6; End. A Simple System Model A Simple LTL property (F (~ v1)): v1 will eventually become False. Boolean v1, v2, v3; Repeat forever in parallel: v1 = v2; v2 = v1 & v3; End. Cone of Influence Reduction
49
Data Abstraction h S S’ Abstraction Function h : S ! S’
50
Data Abstraction Example
Abstraction proceeds component-wise, where variables are components Even Odd …, -2, 0, 2, 4, … x:int …, -3, -1, 1, 3, … Pos Neg Zero …, -3, -2, -1 y:int 1, 2, 3, …
51
Symmetry Symmetry partitions state-space into equivalence classes
Knowledge of symmetry search only 1 state per equivalence class Need techniques for: Symmetry detection Efficient exploitation of symmetry Ideally both should be fully automatic Challenges: detecting & exploiting symmetries Symmetry techniques aim to improve model checkers Challenges: detecting & exploiting symmetries Group structure can lead to efficient exploitation Computational group theory can help find structure
52
Model Written in SPIN byte tok = 1; active [2] proctype user() {
byte state = N; do :: (state == N) -> state = T :: (state == T) && (tok == _pid) -> state = C :: (state == C) -> state = N; if :: tok = 1 :: tok = 2 fi od }
53
Symmetry Reduction: Example
Reduced state-graph State-graph N1 N2 tok=1 N1 N2 tok=2 N1 N2 tok=1 T1 N2 tok=1 N1 T2 tok=1 T1 N2 tok=1 T1 N2 tok=2 N1 T2 tok=1 N1 T2 tok=2 C1 N2 tok=1 T1 T2 tok=1 C1 N2 tok=1 T1 T2 tok=2 T1 T2 tok=1 N1 C2 tok=2 C1 T2 tok=1 C1 T2 tok=1 T1 C2 tok=2
54
Outline Model Checking Techniques Tackle the State Space Explosion
Introduction to MC Symbolic Model Checking Bounded Model Checking Explicit Model Checking Tackle the State Space Explosion Partial Order Reduction Compositional Reasoning Abstraction Symmetry PAT: Process Analysis Toolkit Performance Comparison Conclusion
55
PAT: Process Analysis Toolkit
A interactive system to support: composing, simulating and reasoning of extended Process Algebra. Modeling: Extended CSP (Communicating Sequential Processes) LTL Model Checkers: Explicit Model Checker Bounded Model Checker Features Handle Fairness with Partial Order Reduction Bounded Model Checking Process Algebra
56
PAT Workflow Diagram
57
Fairness Assumptions Fairness properties state that if something is possible sufficiently often, then it must eventually happen. deadlock-freeness. FALSE. non-starvation. FALSE.
58
Specifying Fairness Let e be an event/action.
A weak fair event is written as wf(e) A strong fair event is written as sf(e)
59
Outline Model Checking Techniques Tackle the State Space Explosion
Introduction to MC Symbolic Model Checking Bounded Model Checking Explicit Model Checking Tackle the State Space Explosion Partial Order Reduction Compositional Reasoning Abstraction Symmetry PAT: Process Analysis Toolkit Performance Comparison Conclusion
60
Comparison: NuSMV-ImProviso, and SPIN
SPIN faster, if it can handle example NuSMV-ImProviso can handle more examples NuSMV-ImProviso matches SPIN on Best, Worst More eg, reduction comparable,
61
Comparison: Leader Election Protocol
Models a leader elec in a distributd unidir ring – with fixed assignment of identifiers to nodes – which node has the highest identifier. Until we consider a more general version of the protocol – all possible assignment of identifiers to nodes With random assighnemnt of identifiers to the nodes Models of same size in SMV and Promela Same reduction SPIN faster until…
62
Comparison: PAT, SPIN and FDR
63
Comparison Conclusion
Generally Spin is faster tha NuSMV, and can scale up to larger states. The partial order reduction in Spin is very helpful. Generally, explicit model checking and BMC complements BDD-based model checking. BMC can also outperform BDD for some systems
64
Outline Model Checking Techniques Tackle the State Space Explosion
Introduction to MC Symbolic Model Checking Bounded Model Checking Explicit Model Checking Tackle the State Space Explosion Partial Order Reduction Equivalences and Pre-orders between Structures Compositional Reasoning Abstraction Symmetry PAT: Process Analysis Toolkit Performance Comparison Conclusion
65
Conclusion Three ways to do model checking
Symbolic Model Checking Bounded Model Checking Explicit Model Checking Various optimization techniques Partial Order Reduction Compositional Reasoning Abstraction Symmetry
66
Model Checking Distributed Algorithms
Summary of Papers studied: Model Checking of Consensus Algorithms [T Tsuchiya and A Schiper, SRDS 07] MC of Distributed Dependable Protocols Semantic Property Preserving Abstractions [P Boker, M Serafini, A Pataricza and N Suri, 07] Automatic Verification and Discovery of Byzantine Consensus Protocols [P Zielinski, DSN 07] Model Checking Transactional Memories
67
Model Checking Distributed Algorithms
Most suitable MC technique Explicit Model Checking Benefits: Better support for asynchronous communication Better control of optimization techniques Tools with better performance: SPIN or PAT (better support for the fairness with POR) Possible optimization techniques Abstraction Compositional Reasoning Symmetry
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.