Download presentation
Presentation is loading. Please wait.
Published byEsther Bailey Modified over 9 years ago
2
Ideal Gas Law PV = nRT Brings together gas properties. Can be derived from experiment and theory.
3
Ideal Gas Equation P V = n R T Universal Gas Constant Volume No. of moles Temperature Pressure R = 0.0821 atm L / mol K R = 8.314 kPa L / mol K Kelter, Carr, Scott, Chemistry A Wolrd of Choices 1999, page 366
4
PV = nRT P = pressure V = volume T = temperature (Kelvin) n = number of moles R = gas constant Standard Temperature and Pressure (STP) T = 0 o C or 273 K P = 1 atm = 101.3 kPa = 760 mm Hg Solve for constant (R) PV nT = R Substitute values: (1 atm) (22.4 L) (1 mole)(273 K) R = 0.0821 atm L / mol K or R = 8.31 kPa L / mol K R = 0.0821 atm L mol K Recall: 1 atm = 101.3 kPa (101.3 kPa) ( 1 atm) = 8.31 kPa L mol K 1 mol = 22.4 L @ STP
5
Ideal Gas Law What is the volume that 500 g of iodine will occupy under the conditions: Temp = 300 o C and Pressure = 740 mm Hg? Step 1) Write down given information. mass = 500 g iodine T = 300 o C P = 740 mm Hg R = 0.0821 atm. L / mol. K Step 2) Equation: V= nRT P V (500 g)(0.0821 atm. L / mol. K)(300 o C) 740 mm Hg = Step 3) Solve for variable Step 4) Substitute in numbers and solve V = What MISTAKES did we make in this problem? PV = nRT
6
What mistakes did we make in this problem? What is the volume that 500 g of iodine will occupy under the conditions: Temp = 300 o C and Pressure = 740 mm Hg? Step 1) Write down given information. mass = 500 g iodine Convert mass to gram; recall iodine is diatomic (I 2 ) x mol I 2 = 500 g I 2 (1mol I 2 / 254 g I 2 ) n = 1.9685 mol I 2 T = 300 o C Temperature must be converted to Kelvin T = 300 o C + 273 T = 573 K P = 740 mm Hg Pressure needs to have same unit as R; therefore, convert pressure from mm Hg to atm. x atm = 740 mm Hg (1 atm / 760 mm Hg) P = 0.8 atm R = 0.0821 atm. L / mol. K
7
Ideal Gas Law What is the volume that 500 g of iodine will occupy under the conditions: Temp = 300 o C and Pressure = 740 mm Hg? Step 1) Write down given information. mass = 500 g iodine n = 1.9685 mol I 2 T = 573 K (300 o C) P = 0.9737 atm (740 mm Hg) R = 0.0821 atm. L / mol. K V = ? L Step 2) Equation: PV = nRT V= nRT P V (1.9685 mol)(0.0821 atm. L / mol. K)(573 K) 0.9737 atm = Step 3) Solve for variable Step 4) Substitute in numbers and solve V = 95.1 L I 2
8
Ideal Gas Law What is the volume that 500 g of iodine will occupy under the conditions: Temp = 300 o C and Pressure = 740 mm Hg? Step 1) Write down given information. mass = 500 g iodine T = 300 o C P = 740 mm Hg R = 0.0821 atm. L / mol. K Step 2) Equation: V= nRT P V (500 g)(0.0821 atm. L / mol. K)(300 o C) 740 mm Hg = Step 3) Solve for variable Step 4) Substitute in numbers and solve V = What MISTAKES did we make in this problem? PV = nRT
9
Ideal Gas Law Keys Ideal Gas Law http://www.unit5.org/chemistry/GasLaws.html
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.