Download presentation
Presentation is loading. Please wait.
Published byPeter Short Modified over 9 years ago
1
ME/ECE 439 2007Professor N. J. Ferrier Forward Kinematics Professor Nicola Ferrier ME Room 2246, 265-8793 ferrier@engr.wisc.edu
2
ME/ECE 439 2007Professor N. J. Ferrier Forward Kinematics Modeling assumptions Review: –Spatial Coordinates Pose = Position + Orientation –Rotation Matrices –Homogeneous Coordinates Frame Assignment –Denavit Hartenberg Parameters Robot Kinematics –End-effector Position, –Velocity, & –Acceleration Today Next Lecture
3
ME/ECE 439 2007Professor N. J. Ferrier Industrial Robot sequence of rigid bodies (links) connected by means of articulations (joints)
4
ME/ECE 439 2007Professor N. J. Ferrier Robot Basics: Modeling Kinematics: –Relationship between the joint angles, velocities & accelerations and the end-effector position, velocity, & acceleration
5
ME/ECE 439 2007Professor N. J. Ferrier Modeling Robot Manipulators Open kinematic chain (in this course) One sequence of links connecting the two ends of the chain (Closed kinematic chains form a loop) Prismatic or revolute joints, each with a single degree of mobility Prismatic: translational motion between links Revolute: rotational motion between links Degrees of mobility (joints) vs. degrees of freedom (task) Positioning and orienting requires 6 DOF Redundant: degrees of mobility > degrees of freedom Workspace Portion of environment where the end-effector can access
6
ME/ECE 439 2007Professor N. J. Ferrier Modeling Robot Manipulators Open kinematic chain –sequence of links with one end constrained to the base, the other to the end-effector Base End-effector
7
ME/ECE 439 2007Professor N. J. Ferrier Modeling Robot Manipulators Motion is a composition of elementary motions Base End-effector Joint 1 Joint 2 Joint 3
8
ME/ECE 439 2007Professor N. J. Ferrier Kinematic Modeling of Manipulators Composition of elementary motion of each link Use linear algebra + systematic approach Obtain an expression for the pose of the end-effector as a function of joint variables q i (angles/displacements) and link geometry (link lengths and relative orientations) P e = f(q 1,q 2,,q n ;l 1 ,l n, 1 , n )
9
ME/ECE 439 2007Professor N. J. Ferrier Pose of a Rigid Body Pose = Position + Orientation Physical space, E 3, has no natural coordinates. In mathematical terms, a coordinate map is a homeomorphism (1-1, onto differentiable mapping with a differentiable inverse) of a subset of space to an open subset of R 3. –A point, P, is assigned a 3-vector: A P = (x,y,z) where A denotes the frame of reference
10
ME/ECE 439 2007Professor N. J. Ferrier A B X X Y Y Z Z A P = (x,y,z) B P = (x,y,z) P
11
ME/ECE 439 2007Professor N. J. Ferrier Pose of a Rigid Body Pose = Position + Orientation How do we do this?
12
ME/ECE 439 2007Professor N. J. Ferrier Pose of a Rigid Body Pose = Position + Orientation Orientation of the rigid body –Attach a orthonormal FRAME to the body –Express the unit vectors of this frame with respect to the reference frame XAXA YAYA ZAZA
13
ME/ECE 439 2007Professor N. J. Ferrier Pose of a Rigid Body Pose = Position + Orientation Orientation of the rigid body –Attach a orthonormal FRAME to the body –Express the unit vectors of this frame with respect to the reference frame XAXA YAYA ZAZA
14
ME/ECE 439 2007Professor N. J. Ferrier Rotation Matrices O XYZ & O UVW have coincident origins at O –O UVW is fixed to the object –O XYZ has unit vectors in the directions of the three axes i x, j y,and k z –O UVW has unit vectors in the directions of the three axes i u, j v,and k w Point P can be expressed in either frame:
15
ME/ECE 439 2007Professor N. J. Ferrier O X U V Y W Z A P = (x,y,z) B P = (u,v,w) P
16
ME/ECE 439 2007Professor N. J. Ferrier O X U V Y W Z A P = (x,y,z) P B P = (u,v,w)
17
ME/ECE 439 2007Professor N. J. Ferrier O X U V Y W Z A P = (x,y,z) P B P = (u,v,w)
18
ME/ECE 439 2007Professor N. J. Ferrier O X U V Y W Z A P = (x,y,z) B P = (u,v,w) P
19
ME/ECE 439 2007Professor N. J. Ferrier Rotation Matrices
20
ME/ECE 439 2007Professor N. J. Ferrier Rotation Matrices 1 X axis expressed wrt O uvw
21
ME/ECE 439 2007Professor N. J. Ferrier Rotation Matrices 1 Y axis expressed wrt O uvw
22
ME/ECE 439 2007Professor N. J. Ferrier Rotation Matrices 1 Z axis expressed wrt O uvw
23
ME/ECE 439 2007Professor N. J. Ferrier Rotation Matrices
24
ME/ECE 439 2007Professor N. J. Ferrier Rotation Matrices Z axis expressed wrt O uvw X axis expressed wrt O uvw Y axis expressed wrt O uvw
25
ME/ECE 439 2007Professor N. J. Ferrier Rotation Matrices 1 U axis expressed wrt O xyz
26
ME/ECE 439 2007Professor N. J. Ferrier Rotation Matrices U axis expressed wrt O xyz V axis expressed wrt O xyz W axis expressed wrt O xyz
27
ME/ECE 439 2007Professor N. J. Ferrier Properties of Rotation Matrices Column vectors are the unit vectors of the orthonormal frame –They are mutually orthogonal –They have unit length The inverse relationship is: –Row vectors are also orthogonal unit vectors
28
ME/ECE 439 2007Professor N. J. Ferrier Properties of Rotation Matrices Rotation matrices are orthogonal The transpose is the inverse: For right-handed systems –Determinant = -1(Left handed) Eigenvectors of the matrix form the axis of rotation
29
ME/ECE 439 2007Professor N. J. Ferrier Elementary Rotations: X axis X Y Z
30
ME/ECE 439 2007Professor N. J. Ferrier Elementary Rotations: X axis X Y Z
31
ME/ECE 439 2007Professor N. J. Ferrier Elementary Rotations: Y axis X Y Z
32
ME/ECE 439 2007Professor N. J. Ferrier Elementary Rotations: Z-axis X Y Z
33
ME/ECE 439 2007Professor N. J. Ferrier Composition of Rotation Matrices Express P in 3 coincident rotated frames
34
ME/ECE 439 2007Professor N. J. Ferrier Composition of Rotation Matrices Recall for matrices AB BA (matrix multiplication is not commutative) Rot[Z,90] Rot[Y,-90]
35
ME/ECE 439 2007Professor N. J. Ferrier Composition of Rotation Matrices Recall for matrices AB BA (matrix multiplication is not commutative) Rot[Z,90] Rot[Y,-90]
36
ME/ECE 439 2007Professor N. J. Ferrier Rot[Z,90] Rot[Y,-90] Rot[Z,90] Rot[Y,-90]
37
ME/ECE 439 2007Professor N. J. Ferrier Rot[z,90]Rot[y,-90] Rot[y,-90] Rot[z,90]
38
ME/ECE 439 2007Professor N. J. Ferrier Decomposition of Rotation Matrices Rotation Matrices contain 9 elements Rotation matrices are orthogonal –(6 non-linear constraints) 3 parameters describe rotation Decomposition is not unique
39
ME/ECE 439 2007Professor N. J. Ferrier Decomposition of Rotation Matrices Euler Angles Roll, Pitch, and Yaw
40
ME/ECE 439 2007Professor N. J. Ferrier Decomposition of Rotation Matrices Angle Axis
41
ME/ECE 439 2007Professor N. J. Ferrier Decomposition of Rotation Matrices Angle Axis Elementary Rotations
42
ME/ECE 439 2007Professor N. J. Ferrier Pose of a Rigid Body Pose = Position + Orientation Ok. Now we know what to do about orientation…let’s get back to pose
43
ME/ECE 439 2007Professor N. J. Ferrier Spatial Description of Body position of the origin with an orientation A X Y Z B
44
ME/ECE 439 2007Professor N. J. Ferrier Homogeneous Coordinates Notational convenience
45
ME/ECE 439 2007Professor N. J. Ferrier Composition of Homogeneous Transformations Before: After
46
ME/ECE 439 2007Professor N. J. Ferrier Homogeneous Coordinates Inverse Transformation
47
ME/ECE 439 2007Professor N. J. Ferrier Homogeneous Coordinates Inverse Transformation Orthogonal: no matrix inversion!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.