Download presentation
Presentation is loading. Please wait.
Published byDora Moore Modified over 9 years ago
1
Warm-up: Evaluate the integrals. 1) 2)
2
Warm-up: Evaluate the integrals. 1) 2)
3
Warm-up: Evaluate the integrals. 1) 2)
4
Integration by Parts Section 8.2 Objective: To integrate problems without a u-substitution
5
Integration by Parts When integrating the product of two functions, we often use a u-substitution to make the problem easier to integrate. Sometimes this is not possible. We need another way to solve such problems.
6
Integration by Parts As a first step, we will take the derivative of
7
Integration by Parts As a first step, we will take the derivative of
8
Integration by Parts As a first step, we will take the derivative of
9
Integration by Parts As a first step, we will take the derivative of
10
Integration by Parts As a first step, we will take the derivative of
11
Integration by Parts Now lets make some substitutions to make this easier to apply.
12
Integration by Parts This is the way we will look at these problems. The two functions in the original problem we are integrating are u and dv. The first thing we will do is to choose one function for u and the other function will be dv.
13
Example 1 Use integration by parts to evaluate
14
Example 1 Use integration by parts to evaluate
15
Example 1 Use integration by parts to evaluate
16
Example 1 Use integration by parts to evaluate
17
Example 1 Use integration by parts to evaluate
18
Guidelines The first step in integration by parts is to choose u and dv to obtain a new integral that is easier to evaluate than the original. In general, there are no hard and fast rules for doing this; it is mainly a matter of experience that comes from lots of practice.
19
Guidelines There is a useful strategy that may help when choosing u and dv. When the integrand is a product of two functions from different categories in the following list, you should make u the function whose category occurs earlier in the list. Logarithmic, Inverse Trig, Algebraic, Trig, Exponential The acronym LIATE may help you remember the order.
20
Guidelines If the new integral is harder that the original, you made the wrong choice. Look at what happens when we make different choices for u and dv in example 1.
21
Guidelines If the new integral is harder that the original, you made the wrong choice. Look at what happens when we make different choices for u and dv in example 1.
22
Guidelines Since the new integral is harder than the original, we made the wrong choice.
23
Example 2 Use integration by parts to evaluate
24
Example 2 Use integration by parts to evaluate
25
Example 2 Use integration by parts to evaluate
26
Example 2 Use integration by parts to evaluate
27
Example 2 Use integration by parts to evaluate
28
Example 3 (S): Use integration by parts to evaluate
29
Example 3 Use integration by parts to evaluate
30
Example 3 Use integration by parts to evaluate
31
Example 3 Use integration by parts to evaluate
32
Example 3 Use integration by parts to evaluate
33
Example 4 (Repeated): Use integration by parts to evaluate
34
Example 4 (Repeated): Use integration by parts to evaluate
35
Example 4 (Repeated): Use integration by parts to evaluate
36
Example 4 (Repeated): Use integration by parts to evaluate
37
Example 4 (Repeated): Use integration by parts to evaluate
38
Example 4 (Repeated): Use integration by parts to evaluate
39
Example 4 (Repeated): Use integration by parts to evaluate
40
Example 4 (Repeated): Use integration by parts to evaluate
41
Example 5: Evaluate the following definite integral
42
Example 5: Evaluate the following definite integral
43
Example 5: Evaluate the following definite integral
44
Example 5: Evaluate the following definite integral
45
Example 5: Evaluate the following definite integral
46
Example 5: Evaluate the following definite integral
47
Example 5: Evaluate the following definite integral
48
Example 5: Evaluate the following definite integral
49
Example 5: Evaluate the following definite integral
50
Example 5: Evaluate the following definite integral
51
Example 5: Evaluate the following definite integral
52
Example 5: Evaluate the following definite integral
53
Example 5: Evaluate the following definite integral
54
Homework: Page 520 # 3-9 odd, 15, 25, 29, 31, 37
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.