Presentation is loading. Please wait.

Presentation is loading. Please wait.

Nuclear Magnetic Resonance (NMR) Spectroscopy Kurt Wuthrich Chemistry-2002 Richard Ernst Chemistry -1991 Felix Bloch & Edward Purcell Physics-1952 Paul.

Similar presentations


Presentation on theme: "Nuclear Magnetic Resonance (NMR) Spectroscopy Kurt Wuthrich Chemistry-2002 Richard Ernst Chemistry -1991 Felix Bloch & Edward Purcell Physics-1952 Paul."— Presentation transcript:

1 Nuclear Magnetic Resonance (NMR) Spectroscopy Kurt Wuthrich Chemistry-2002 Richard Ernst Chemistry -1991 Felix Bloch & Edward Purcell Physics-1952 Paul Lauterbur & Peter Mansfield Medicine-2003 Brian Sykes Lewis Kay

2 Principles of NMR Protein Spectroscopy What does NMR tell us ? 1) Primary structure characterization 2) Dynamics - psec-sec timescales 3) Equilibrium binding 4) Folding/Unfolding 5) Three dimensional structure Some Advantages 1) Solution based 2) Non-destructive 3) Residue specific information

3 Principles of NMR Protein Spectroscopy Wavelength (nm) 10 100 1000 10 4 10 5 10 6 10 7 10 8 10 9 UV/Vis IR NMR Nuclear spin transitions Electron transitions Crystallography X-rays Radio waves

4 Principles of NMR Protein Spectroscopy Absorption of energy by nucleus - depends on nuclear spin (I) = sum of unpaired protons + neutrons (spin 1/2) 1 H 1/2 1 0 12 C 0 6 6 13 C 1/2 6 7 14 N 1 7 7 15 N 1/2 7 8 NucleusI# Protons# Neutrons I≠0 - NMR observed - spin will have magnetic moment  =  I For proteins 1 H, 13 C, 15 N ( 31 P)

5 Principles of NMR Protein Spectroscopy I = 1/2  =  I z =  m I h m I = -1/2  Under normal conditions the difference between these is negligible N S S N Now lets put these in a static magnetic field N S m=(-I, -I+1 ….I-1, I) m I = +1/2  BoBo

6 Principles of NMR Protein Spectroscopy x y z BoBo In a magnetic field E = -  B o = -  I z B o = -  hm I B o m=(-I, -I+1 ….I-1, I)  =-  I z Normal Magnetic Field (B o )

7 Principles of Protein NMR Spectroscopy m I = -1/2  N S S N N S m I = +1/2  So how does this give us an “NMR signal” ? E = 1  hB 0 2 -  hm I B 0 - 1  hB 0 2    E =  hB 0

8 Principles of Protein NMR Spectroscopy    E =  hB 0 This occurs for all 1 H, 13 C, 15 N in magnetic field B 0 = 11.75 T (500 MHz) 14.09 T (600 MHz) 18.79 T (800 MHz) B0B0 1 H 26.75 13 C 6.73 15 N -2.72    rad / T sec) As B 0 so does  E !

9 Principles of Protein NMR Spectroscopy    E =  hB 0 = h We can use this to select for the nucleus of interest =  B 0 22 (Hz)  =  B 0 (rad) Larmor Precession Use frequency to stimulate transitions ! 1 H 26.75600.00 13 C 6.73150.87 15 N -2.71 60.82    rad / T sec) Nucleus at 14.09 T

10 Principles of Protein NMR Spectroscopy    E =  hB 0 = h NMR is an insensitive method Populations of  determined by  E - Boltzman distribution n  -n  =  n = N  hB 0 2kT 1 H N=10 6 11.75T 18.79T 499,980 500,020 499,968 500,032  n = 40  n = 64 Only measure net difference (  n) Insensitivity Larger magnet = sensitivity

11 Principles of Protein NMR Spectroscopy Sensitivity n  -n  =  n = N  hB o 2kT M o =n   z  + n   z  =  n  z  = 1  h  n = 1 N (  h) 2 B o 2 4kT - it turns out the observed signal (S) - varies with B o 2 x y z BoBo x y z BoBo

12 Principles of Protein NMR Spectroscopy Net Magnetization x y z x y z MoMo BoBo BoBo oo Rotating Frame

13 Principles of Protein NMR Spectroscopy How is the NMR Signal Obtained ? x y z MoMo BoBo -employ a rf pulse at of desired nucleus x y z 2  *pw*  B 1 =  “rf pulse”  B1B1 B1B1

14 Principles of Protein NMR Spectroscopy x y z MoMo BoBo x y z 2  *pw*  B 1 =   =  /2  rf on off pw= 1 4*  B 1 B1B1 B1B1 pw = 6  sec  B 1 = 41 kHz

15 Principles of Protein NMR Spectroscopy x y z  rf on off B1B1 x y z MoMo BoBo B1B1 x y z B1B1 receiver FT time

16 Principles of Protein NMR Spectroscopy x y z off B1B1 x y z B1B1 receiver time T1T1 x y z B1B1 T2T2 M z (t) = M o (1-e -t/T 1 ) M y (t) = M y (0)*e -t/T 2

17 Principles of Protein NMR Spectroscopy 100 10 1 0.1 0.01 0.001 Correlation Time,  c (nsec) Molecular Weight T 1, T 2 (sec) 100 10 1 0.1 0.01 0.001 T1T1 T2T2 1/2 = 1  T 2 * Linewidths MW 100 0.5 Hz MW 20,000 10 Hz

18 Principles of Protein NMR Spectroscopy NMR Instrumentation Magnet - B o 18.79 T vacuum N 2(l) He (l) magnet 22.31 T (2006) probe

19 Principles of Protein NMR Spectroscopy Magnet Technology Ribonuclease (1957) - 40 MHz Lysozyme (1995) - 750 MHz 0.94 T 1 17.62 T 351 22.31 T 563 Field S/N

20 Principles of Protein NMR Spectroscopy Probe Technology BoBo B1B1

21 Principles of Protein NMR Spectroscopy Cold “Cryogenic” Probe S/N ~ 1/{R s *(T s +T pa )+(R c *(T c +T pa )} 1/2 T pa, T c - lowered 298˚K 20˚K R s, T s - near 298˚K 3-4 time more sensitive 500 MHz + cold probe = 1.6x S/N 800 MHz

22 Principles of Protein NMR Spectroscopy Block Diagram of NMR Spectrometer Probe Transmitter Preamplifier Duplexer CPU Receiver Computer obs, lk obs, dec, lk


Download ppt "Nuclear Magnetic Resonance (NMR) Spectroscopy Kurt Wuthrich Chemistry-2002 Richard Ernst Chemistry -1991 Felix Bloch & Edward Purcell Physics-1952 Paul."

Similar presentations


Ads by Google