Download presentation
Presentation is loading. Please wait.
Published byBrooke Elliott Modified over 9 years ago
1
Computer animation in electrical engineering education: Long-term effect on academic achievements A. Gero & W. Zoabi Technion – Israel Institute of Technology Department of Education in Technology & Science
2
Outline Introduction Theory: Animation-Based Learning The Learning Unit Research Questions Methodology Findings Conclusions
3
Introduction A Practical Engineer occupies a position in industry that is intermediate between the engineer and the technician Practical engineering college teachers encounter difficulty when teaching the principle of operation of the BJT due to The complexity of the device (Karmalkar, 1999) Lack of adequate background among the students We developed a new learning unit Tailored to the students’ background Qualitatively describes the processes occurring in the BJT Based on computer animation
4
Theory: Animation-Based Learning Static hypothesis (Mayer et al., 2005) Better learning is achieved by using written text and static diagrams Static tools reduce the cognitive load imposed on the learner by presenting only the key stages of the process learned Dynamic hypothesis (Rieber, 2009) Better learning is achieved by using animations Animation reduces the cognitive load imposed on the learner by presenting the dynamic picture necessary to understand the process learned Animation creates interest leading to high levels of motivation Studies have not produced any conclusive results indicating the advantages of one approach over another (Tversky et al., 2002)
5
The Learning Unit (1) Tailored to the students’ background Qualitatively describes the processes occurring in the BJT (Sedra & Smith, 2004) Cut-off Forward-active Saturation Based on computer animation, developed using Microsoft PowerPoint in light of design principles (Kali & Linn, 2008) Incorporate written text in spatial proximity to the animation Avoid the use of excess items distracting the learner from the point Presented by the teacher accompanied by his explanations
6
The Learning Unit (2)
7
Research Questions What are the academic achievements of students who studied the subject of the BJT through animation compared to their peers who studied the subject using static diagrams At the end of an introductory electronics course? At the end of advanced electronics courses?
8
Methodology (1) Participants 41 students who in 2011-2012 were studying towards a practical engineering degree in electronics at a leading college in Israel The students attended three successive mandatory courses on electronics, a basic course (Course 1) and two advanced courses (Courses 2 & 3) Methods At the onset of Course 1, the students were randomly assigned into two groups: An experimental group of 21 students A control group of 20 students Members of each group were examined in an identical preliminary achievement test on the subject of the diode (Test 0)
9
Methodology (2) The experimental group learned the structure and principle of operation of the BJT through animation, while the control group learned these subjects using static diagrams drawn on the blackboard Members of each group were examined in an identical final achievement test on the subject of the BJT (Test 1) In the following courses, Courses 2 & 3, the two groups were united and studied the advanced topics using static diagrams together At the end of each advanced course, the students took a final achievement test (Test 2 and Test 3, respectively) Five semi-structured interviews with students in the experimental group were carried out
10
Methodology (3) Instruments Each test was validated by two experts from the field of education in electrical and electronics engineering Each test did not include the name of the examinee but rather only his identification number The tests from both groups were mixed together and graded by two independent reviewers in random order
11
Findings – Quantitative: Basic Course Test 1Test 0 Group p-valuetSDMp-valuetSDM <0.0013.37 11.1378.24 n.s.0.31 23.5467.95Experimental 11.8666.1520.3065.80Control A significant gap of more than 10 points (out of 100) on average
12
Findings – Quantitative: Advanced Courses Test 3Test 2 Group p-valuetSDMp-valuetSDM <0.051.93 8.62 91.36 <0.052.15 7.70 87.64Experimental 16.86 79.90 18.07 74.40Control The significant gap was maintained throughout the advanced courses
13
Findings – Qualitative Animation promotes understanding since, unlike static diagrams, it presents a dynamic picture of the process being learned In the diagrams [on the subject of the diode] you see it [an electron]... but you cannot see it moving... In the animation I can see the whole process... the path of the electrons' movement... So it helps me understand... Animation-based learning promotes retention and transfer [During the basic course] we saw in the animation that only a small fraction of electrons moves towards the base contact [of a BJT in its active mode]… Therefore, I think that in this complex device [taught during an advanced course] I can also neglect the base current of the transistor…
14
Conclusions This study shows a significant gap of more than 10 points between the academic achievements of students in an introductory electronics course who studied the subject of the BJT through animation and the achievements of their colleagues who studied it using static diagrams This gap is maintained in advanced electronics courses These results indicate that for the case of electronic devices animation-based learning has a long-term effect
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.