Presentation is loading. Please wait.

Presentation is loading. Please wait.

S1: Chapter 5 Probability

Similar presentations


Presentation on theme: "S1: Chapter 5 Probability"โ€” Presentation transcript:

1 S1: Chapter 5 Probability
Dr J Frost Last modified: 11th December 2013

2 Starter Draw a sample space (using a table) for throwing two dice and recording the product of the two values. What is the probability of the value being greater or equal to 24? ? Die 1 ร— 1 2 3 4 5 6 8 10 12 9 15 18 16 20 24 25 30 36 Die 2 ? ๐‘ƒ ๐‘ƒ๐‘Ÿ๐‘œ๐‘‘๐‘ข๐‘๐‘กโ‰ฅ24 = 6 36 = 1 6

3 Some fundamentals ? ? ? An experiment is:
A repeatable process that gives rise to a number of outcomes. ? A sample space is: The set of possible outcomes of an experiment. e.g. The sample space ๐‘† of throwing two coins: ๐‘†= ๐ป๐ป, ๐ป๐‘‡, ๐‘‡๐ป, ๐‘‡๐‘‡ ? ?

4 ๐‘ƒ ๐‘’๐‘ฃ๐‘’๐‘›๐‘ก =0.3 Some fundamentals
An event is a set of (one or more) outcomes. ? ๐‘จ 2 4 6 3 5 1 ๐‘ฉ ๐‘บ ๐‘†= the whole sample space ๐ด= even number on a die thrown ๐ต= prime number on a die thrown

5 Some fundamentals ๐‘จ 2 4 6 3 5 1 ๐‘ฉ ๐‘บ ๐‘†= the whole sample space ๐ด= even number on a die thrown ๐ต= prime number on a die thrown What does it mean in this context? What is the resulting set of outcomes? ๐ดโ€ฒ ? Not A. i.e. Not rolling an even number. ? {1, 3, 5} ๐ดโˆช๐ต ? A or B. i.e. Rolling an even or prime number. ? {2,3,4,5,6} ๐ดโˆฉ๐ต ? A and B. i.e. Rolling a number which is even and prime. ? {2}

6 Some fundamentals ๐‘จ 2 4 6 3 5 1 ๐‘ฉ ๐‘บ ๐‘†= the whole sample space ๐ด= even number on a die thrown ๐ต= prime number on a die thrown What does it mean in this context? What is the resulting set of outcomes? ๐ดโˆฉ๐ตโ€ฒ ? Rolling a number which is even and not prime. ? {4,6} (๐ดโˆช๐ต)โ€ฒ ? Rolling a number which is not [even or prime]. ? {1} ๐ดโˆฉ๐ต โ€ฒ ? Rolling a number which is not [even and prime]. ? {1,3,4,5,6}

7 What area is indicated? A C B S ๐ดโˆฉ๐ต ?

8 What area is indicated? A C B S ๐ดโˆช๐ต ?

9 What area is indicated? A C B S ๐ดโˆฉ๐ตโˆฉ๐ถ ?

10 What area is indicated? A C B S ๐ดโˆฉ ๐ถ โ€ฒ ?

11 What area is indicated? A C B S ๐ดโˆฉ๐ตโˆฉ ๐ถ โ€ฒ ?

12 A C B S ๐ด โ€ฒ โˆฉ ๐ต โ€ฒ โˆฉ ๐ถ โ€ฒ ๐ดโˆช๐ตโˆช๐ถ โ€ฒ What area is indicated? ? ? or
alternativelyโ€ฆ ? ๐ดโˆช๐ตโˆช๐ถ โ€ฒ

13 What area is indicated? A C B S ๐ด โ€ฒ ?

14 What area is indicated? A C B S ๐ดโˆฉ ๐ตโˆฉ๐ถ โ€ฒ ?

15 Solving problems using Venn Diagrams
A vet surveys 100 of her clients. She finds that 25 own dogs, 15 own dogs and cats, 11 own dogs and tropical fish, 53 own cats, 10 own cats and tropical fish, 7 own dogs, cats and tropical fish, 40 own tropical fish. Fill in this Venn Diagram, and hence answer the following questions: ๐‘ƒ ๐‘œ๐‘ค๐‘›๐‘  ๐‘‘๐‘œ๐‘” ๐‘œ๐‘›๐‘™๐‘ฆ ๐‘ƒ ๐‘‘๐‘œ๐‘’๐‘  ๐‘›๐‘œ๐‘ก ๐‘œ๐‘ค๐‘› ๐‘ก๐‘Ÿ๐‘œ๐‘๐‘–๐‘๐‘Ž๐‘™ ๐‘“๐‘–๐‘ โ„Ž ๐‘ƒ(๐‘‘๐‘œ๐‘’๐‘  ๐‘›๐‘œ๐‘ก ๐‘œ๐‘ค๐‘› ๐‘‘๐‘œ๐‘”๐‘ , ๐‘๐‘Ž๐‘ก๐‘ , ๐‘œ๐‘Ÿ ๐‘ก๐‘Ÿ๐‘œ๐‘๐‘–๐‘๐‘Ž๐‘™ ๐‘“๐‘–๐‘ โ„Ž) ๐‘ช ๐‘บ ? 35 100 ? 11 100 8 100 ? ? 3 100 ๐‘ซ 7 100 ๐‘ญ ? 26 100 ? 6 100 ? 4 100 Dr Frostโ€™s cat โ€œPippinโ€

16 Exercises Page 84 Exercise 5B Q6

17 Recap ? ? ? If ๐ด and ๐ต are mutually exclusive, this means:
they can not happen at the same time. ? On a Venn Diagramโ€ฆ the circles appear separately. ? ๐ด ๐ต If ๐ด and ๐ต are independent, this means: one does not affect the other. Note that these 2 things are ENTIRELY DIFFERENT, they are not โ€˜oppositesโ€™. If ๐ด and ๐ต are not mutually exclusive, that doesnโ€™t necessarily mean they are independent. The Venn Diagram is NOT AFFECTED BY INDEPENDENCE. ?

18 ๐‘ƒ ๐ดโˆช๐ต =๐‘ƒ ๐ด +๐‘ƒ(๐ต) ๐‘ƒ ๐ดโˆฉ๐ต =0 ๐‘ƒ ๐ดโˆฉ๐ต =๐‘ƒ ๐ด ร—๐‘ƒ ๐ต Recap
If events A and B are mutually exclusive, then: ๐‘ƒ ๐ดโˆช๐ต =๐‘ƒ ๐ด +๐‘ƒ(๐ต) ? ๐‘ƒ ๐ดโˆฉ๐ต =0 ? If events A and B are independent, then: ๐‘ƒ ๐ดโˆฉ๐ต =๐‘ƒ ๐ด ร—๐‘ƒ ๐ต But weโ€™re interested in how we can calculate probabilities when events are not mutually exclusive, or not independent.

19 Addition Law ? ? ๐‘จ ๐‘ฉ ๐‘ƒ ๐ดโˆช๐ต =๐‘ƒ ๐ด +๐‘ƒ(๐ต) ๐‘ฉ ๐‘จ ๐‘ƒ ๐ดโˆช๐ต =๐‘ƒ ๐ด +๐‘ƒ ๐ต โˆ’๐‘ƒ ๐ดโˆฉ๐ต
Mutually Exclusive Think about the areasโ€ฆ ๐‘จ ๐‘ฉ ๐‘ƒ ๐ดโˆช๐ต =๐‘ƒ ๐ด +๐‘ƒ(๐ต) ? Not Mutually Exclusive ๐‘ฉ ๐‘จ ๐‘ƒ ๐ดโˆช๐ต =๐‘ƒ ๐ด +๐‘ƒ ๐ต โˆ’๐‘ƒ ๐ดโˆฉ๐ต ?

20 Example ๐‘ƒ ๐ดโˆฉ๐ต =0.4 ? ๐‘ƒ ๐ดโ€ฒ =0.4 ? ๐‘ƒ ๐ด โ€ฒ โˆช๐ต =0.8 ? ๐‘ƒ ๐ด โ€ฒ โˆฉ๐ต =0.3 ?
๐ด and ๐ต are two events such that ๐‘ƒ ๐ด =0.6, ๐‘ƒ ๐ต =0.7 and ๐‘ƒ ๐ดโˆช๐ต =0.9. Find: ๐‘ƒ ๐ดโˆฉ๐ต =0.4 ? ๐‘ƒ ๐ดโ€ฒ =0.4 ? Bro Tip: You could use a Venn Diagram here. ๐‘ƒ ๐ด โ€ฒ โˆช๐ต =0.8 ? ๐‘ƒ ๐ด โ€ฒ โˆฉ๐ต =0.3 ?

21 Click to reveal Venn Diagram
Check your understanding The events ๐ธ and ๐น are such that ๐‘ƒ ๐ธ = ๐‘ƒ ๐ธโˆช๐น = ๐‘ƒ ๐ธโˆฉ ๐น โ€ฒ =0.11 Find a) ๐‘ƒ ๐ธโˆฉ๐น =0.17 b) ๐‘ƒ ๐น =0.65 c) ๐‘ƒ ๐ธ โ€ฒ ๐น โ€ฒ = ๐‘ƒ ๐ธ โ€ฒ โˆฉ ๐น โ€ฒ ๐‘ƒ ๐น โ€ฒ = = 24 35 ? ? ? Click to reveal Venn Diagram ๐‘บ ๐‘ฌ ๐‘ญ 0.11 0.17 0.48 Bro Tip: Venn Diagrams can typically be used when you have intersections involving โ€˜notโ€™s. 0.24

22 Exercises Page 86 Exercise 5C Q1, 3, 5

23 Conditional Probability
Think about how we formed a probability tree at GCSE: ๐‘ƒ ๐ดโˆฉ๐ต =๐‘ƒ ๐ด ร—๐‘ƒ ๐ต ๐ด P ๐ต|๐ด ? ๐ต ? ๐‘ƒ ๐ด ๐ด ๐ตโ€ฒ ๐ต ๐ดโ€ฒ ๐ตโ€ฒ Alternatively: Bro Tip: Youโ€™re dividing by the event youโ€™re conditioning on. ๐‘ƒ ๐ต ๐ด = ๐‘ƒ ๐ดโˆฉ๐ต ๐‘ƒ ๐ด ?

24 Quickfire Examples Given that P(A) = 0.5 and ๐‘ƒ ๐ดโˆฉ๐ต =0.3, what is P(B | A)? ๐‘ท ๐‘ฉ ๐‘จ = ๐‘ท ๐‘จโˆฉ๐‘ฉ ๐‘ท ๐‘จ = ๐ŸŽ.๐Ÿ‘ ๐ŸŽ.๐Ÿ“ =๐ŸŽ.๐Ÿ” Given that P(Y) = 0.6 and ๐‘ƒ ๐‘‹โˆฉ๐‘Œ =0.4, what is ๐‘ƒ ๐‘‹ โ€ฒ ๐‘Œ ? P(Xโ€™ | Z) = 1 โ€“ P(X | Z) = 1 โ€“ (0.4/0.6) = 0.33 Given that P(A) = 0.5, P(B) = 0.5 and ๐‘ƒ ๐ดโˆฉ๐ต =0.4, what is ๐‘ƒ ๐ต ๐ด โ€ฒ ? (Hint: youโ€™ll likely need a Venn Diagram for this!) ๐‘ท ๐‘ฉ ๐‘จ โ€ฒ =๐‘ท( ๐‘จ โ€ฒ โˆฉ๐‘ฉ)/๐‘ท ๐‘จ โ€ฒ = 0.1 / 0.5 = 0.2 ? ? ? Bro Tip: Note that P(A | Bโ€™) + P(Aโ€™ | Bโ€™) = 1 It is NOT in general true that: P(Aโ€™ | Bโ€™) = 1 โ€“ P(A | B)

25 Summary so far ? ? ? ? ? ? P ๐ดโˆฉ๐ต =๐‘ƒ ๐ด ร—๐‘ƒ ๐ต P ๐ด ๐ต =๐‘ƒ(๐ด) P ๐ดโˆฉ๐ต =0
If events ๐‘จ and ๐‘ฉ are independent. P ๐ดโˆฉ๐ต =๐‘ƒ ๐ด ร—๐‘ƒ ๐ต P ๐ด ๐ต =๐‘ƒ(๐ด) ? ? If events ๐‘จ and ๐‘ฉ are mutually exclusive: P ๐ดโˆฉ๐ต =0 P ๐ดโˆช๐ต =๐‘ƒ ๐ด +๐‘ƒ ๐ต ? ? In general: ? P ๐ด ๐ต = ๐‘ƒ ๐ดโˆฉ๐ต ๐‘ƒ ๐ต P ๐ดโˆช๐ต =๐‘ ๐ด +๐‘ ๐ต โˆ’๐‘ ๐ดโˆฉ๐ต ?

26 More difficult Venn Diagrams based on mutual exclusivity
(Page 102) Events ๐ด, ๐ต and ๐ถ are defined in the sample space ๐‘† such that ๐‘ ๐ด =0.4, ๐‘ ๐ต =0.2, ๐‘ƒ ๐ดโˆฉ๐ถ =0.04 and ๐‘ƒ ๐ตโˆช๐ถ =0.44. The events ๐ด and ๐ต are mutually exclusive and ๐ต and ๐ถ are independent. a) Draw a Venn Diagram to illustrate the relationship between the three events and the sample space. [Weโ€™ll work out the probabilities later] ? ๐‘† Key Points: Recall that only mutual exclusivity affects the Venn Diagram. You will lose a mark if you forget the outer rectangle. ๐ถ ๐ต ๐ด

27 More difficult Venn Diagrams based on mutual exclusivity
(Page 102) Events ๐ด, ๐ต and ๐ถ are defined in the sample space ๐‘† such that ๐‘ ๐ด =0.4, ๐‘ ๐ต =0.2, ๐‘ƒ ๐ดโˆฉ๐ถ =0.04 and ๐‘ƒ ๐ตโˆช๐ถ =0.44. The events ๐ด and ๐ต are mutually exclusive and ๐ต and ๐ถ are independent. b) Find ๐‘ท(๐‘ฉ|๐‘ช), ๐‘ท(๐‘ช), ๐‘ท ๐‘ฉโˆฉ๐‘ช , ๐‘ท ๐‘จ โ€ฒ โˆฉ ๐‘ฉ โ€ฒ โˆฉ ๐‘ช โ€ฒ , ๐‘ท ๐‘ชโˆฉ ๐‘ฉ โ€ฒ Bro Tip: Use the last sentence about mutual exclusivity/independence to immediately write out some extra information, e.g. ๐‘ƒ ๐ตโˆฉ๐ถ =0.2๐‘ƒ(๐ถ) ๐‘† ๐ถ ๐ต ๐ด 0.36 ? 0.04 ? 0.2 0.06 ? 0.14 ? ? ? ? ๐‘ƒ ๐ต ๐ถ =0.2 ๐‘ƒ ๐ถ =0.3 ? ๐‘ƒ ๐ด โ€ฒ โˆฉ ๐ต โ€ฒ โˆฉ ๐ถ โ€ฒ =0.2 ? ๐‘ƒ ๐ถโˆฉ ๐ต โ€ฒ =0.24

28 June 2013 Answer to (d): = 11 20 ? ? = ? = 3 8 ? = 1 4 ?

29 Provided sheet of past paper questions!
Exercises Provided sheet of past paper questions!

30 Exercises (on worksheet)
a ? P(A u B) = P(A) + P(B) โ€“ P(A n B) = 0.67 P(Aโ€™ | Bโ€™) = P(Aโ€™ n Bโ€™) / P(Bโ€™) = 0.33 / 0.55 = 0.6 (We can see that P(Aโ€™ n Bโ€™) = 1 โ€“ P(A u B) by a quick sketch of a Venn Diagram) P(B n C) = P(B)P(C) = 0.09 (we can directly multiply because theyโ€™re independent) b ? c ? ? 0.22 d e ? Using a Venn Diagram, we can see that: P([B u C]โ€™) = P(A n Bโ€™) + P(Aโ€™ n Bโ€™ n Cโ€™) = = 0.44 0.22 0.13 0.09 0.11 0.23 A C B S

31 Exercises (on worksheet)
B and W, or T and W. Because the circles donโ€™t overlap/the events canโ€™t happen at the same time. P(B n T) = 5/25 = 1/5 P(B)P(T) = 9/25 x 8/25 = 72/625 These are not the same so not independent. P(W) = 7/25 P(B n T) = 5/25 P(T | B) = 5 / 9 (either using the Venn Diagram directly, or by using P(T n B) / P(B) a ? b ? c ? d ? e ?

32 Probability Trees ? ? ? ? ? ? ? ? 1st pick 2nd pick 4 10 ๐‘…๐‘’๐‘‘ 1 2 ๐‘…๐‘’๐‘‘
Trees are useful when you have later events conditioned on earlier ones, or in general when you have lots of conditional probabilities. Example: You have two bags, the first with 5 red balls and 5 blue balls, and the second with 3 red balls and 6 blue balls. You first pick a ball from the first bag, and place it in the second. You then pick a ball from the second bag. Complete the tree diagram. Hence find the probability that: You pick a red ball on your second pick. ๐‘ƒ ๐‘… 2 =๐‘ƒ ๐‘… 1 โˆฉ ๐‘… 2 +๐‘ƒ ๐ต 1 โˆฉ๐‘… 2 = = 7 20 Given that your second pick was red, the first pick was also red. ๐‘ƒ ๐‘… 1 ๐‘… 2 = ๐‘ƒ ๐‘… 1 โˆฉ ๐‘… 2 ๐‘ƒ ๐‘… = = 4 7 1st pick 2nd pick 4 10 ? ๐‘…๐‘’๐‘‘ ? 1 2 ? ๐‘…๐‘’๐‘‘ 6 10 ? ๐ต๐‘™๐‘ข๐‘’ 3 10 ? ๐‘…๐‘’๐‘‘ 1 2 ? ๐ต๐‘™๐‘ข๐‘’ ? 7 10 ? ๐ต๐‘™๐‘ข๐‘’

33 Probability Trees Key Point: When you need to find a probability using a tree, consider all possible paths in which that event is satisfied, and add the probabilities together. ๐ถ ๐ต ๐‘ƒ ๐ถ =๐‘ƒ ๐ดโˆฉ๐ตโˆฉ๐ถ +๐‘ƒ ๐ดโˆฉ ๐ต โ€ฒ โˆฉ๐ถ +๐‘ƒ ๐ด โ€ฒ โˆฉ๐ตโˆฉ๐ถ +๐‘ƒ ๐ด โ€ฒ โˆฉ ๐ต โ€ฒ โˆฉ๐ถ ๐‘ƒ ๐ตโˆฉ๐ถโ€ฒ =๐‘ƒ ๐ดโˆฉ๐ตโˆฉ ๐ถ โ€ฒ +๐‘ƒ ๐ด โ€ฒ โˆฉ๐ตโˆฉ ๐ถ โ€ฒ ๐‘ƒ ๐ต =๐‘ƒ ๐ดโˆฉ๐ต +๐‘ƒ ๐ด โ€ฒ โˆฉ๐ต (Notice that we can completely ignore C here) ๐‘ƒ ๐ดโ€ฒโˆฉ๐ถ =๐‘ƒ ๐ด โ€ฒ โˆฉ๐ตโˆฉ๐ถ +๐‘ƒ ๐ด โ€ฒ โˆฉ ๐ต โ€ฒ โˆฉ๐ถ ? ๐ถโ€ฒ ๐ด ๐ถ ๐ตโ€ฒ ? ๐ถโ€ฒ ๐ต ๐ถ ? ๐ดโ€ฒ ๐ถโ€ฒ ๐ถ ? ๐ตโ€ฒ ๐ถโ€ฒ

34 Click to reveal Tree Diagram
Check your understanding Of 120 competitors in a golf tournament, 68 reached the green with their tee shot on the first hole. Of these, 46 completed the hole in 3 shots or less. In total, 49 players took more than 3 shots on the first hole. Click to reveal Tree Diagram Find the probability that a player chosen at random: Reached the green with his tee shot and took more than 3 shots in total. P Rโˆฉ ๐ถ โ€ฒ = ร— = Missed the green on his tee shot and took at most 3 shots. P ๐‘… โ€ฒ โˆฉ๐ถ = ร— = Took 3 shots or less in total, given that he missed the green with his tee shot. ๐‘ƒ ๐ถ ๐‘… โ€ฒ = ๐‘ƒ ๐‘… โ€ฒ โˆฉ๐ถ ๐‘ƒ ๐‘… โ€ฒ = = 27 52 46 68 ๐ถ 68 120 ๐‘… 22 68 ๐ถโ€ฒ 25 52 ? ๐ถ 52 120 ๐‘…โ€ฒ ? 27 52 ๐ถโ€ฒ ? Iโ€™ve used ๐‘… to represent the event โ€œreached the green with tee shot on first holeโ€ and ๐ถ to mean โ€œcompleted shot in 3 shots or lessโ€.

35 Exercises (on worksheet)
P(H) = (5/12 x 2/3) + (7/12 x ยฝ) = 41/72 P(R|H) = P(R n H) / P(H) = (5/18) / (41/72) = 20/41 P(RR or BB) = (5/12)2 + (7/12)2 = 37/72 b ? ? 2 3 c ? 5 12 ? 1 3 ? d ? ? 1 2 7 12 ? ? 1 2

36 Classic Conundrum I have two children. One of them is a boy. What is the probability the other is a boy? ๐ด๐‘›๐‘ ๐‘ค๐‘’๐‘Ÿ= 1 3 ? ? The โ€˜restricted sample spaceโ€™ method Thereโ€™s four possibilities for the sex of the two children, but only 3 match the description. In 1 out of the 3 possibilities BB BG GB GG METHOD 1 ? Using conditional probability ๐‘ ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ ๐‘–๐‘  ๐‘๐‘œ๐‘ฆ ๐‘œ๐‘›๐‘’ ๐‘–๐‘  ๐‘Ž ๐‘๐‘œ๐‘ฆ = ๐‘ ๐‘œ๐‘›๐‘’ ๐‘–๐‘  ๐‘Ž ๐‘๐‘œ๐‘ฆ ๐ด๐‘๐ท ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ ๐‘–๐‘  ๐‘Ž ๐‘๐‘œ๐‘ฆ ๐‘ ๐‘œ๐‘›๐‘’ ๐‘–๐‘  ๐‘Ž ๐‘๐‘œ๐‘ฆ = 1/4 3/4 = 1 3 METHOD 2


Download ppt "S1: Chapter 5 Probability"

Similar presentations


Ads by Google