Download presentation
Presentation is loading. Please wait.
Published byWilfred Adrian Anthony Modified over 9 years ago
1
Kepler: Towards a Grid-Enabled System for Scientific Workflows Ilkay Altintas, Chad Berkley, Efrat Jaeger, Matthew Jones, Bertram Ludäscher*, Steve Mock *ludaesch@SDSC.EDU San Diego Supercomputer Center (SDSC) University of California, San Diego (UCSD)
2
B. Ludäscher et al. – Grid-Enabling Kepler 2 Outline Motivation: Scientific Workflows (SEEK, SDM, GEON,..) Current Features of the Kepler Scientific Workflows System Extending Kepler: –Grid-Enabling Kepler: 3 rd party transfer –WF planning & optimization Shipping and Handling Algebra (SHA) Web Service Composition as Declarative Query Plans –Semantic Types for Scientific Workflows Conclusions
3
B. Ludäscher et al. – Grid-Enabling Kepler 3 Kepler Team, Projects, Sponsors Ilkay Altintas SDM Chad Berkley SEEK Shawn Bowers SEEK Jeffrey Grethe BIRN Christopher H. Brooks Ptolemy II Zhengang Cheng SDM Efrat Jaeger GEON Matt Jones SEEK Edward A. Lee Ptolemy II Kai Lin GEON Bertram Ludäscher BIRN, GEON, SDM, SEEK Steve Mock NMI Steve Neuendorffer Ptolemy II Jing Tao SEEK Mladen Vouk SDM Yang Zhao Ptolemy II … Ptolemy II
4
B. Ludäscher et al. – Grid-Enabling Kepler 4 Example: SEEK – Science Environment for Ecological Knowledge (large NSF ITR) Analysis & Modeling System –Design and execution of ecological models and analysis –End user focus – application-/upperware Semantic Mediation System –Data Integration of hard- to-relate sources and processes –Semantic Types and Ontologies – upper middleware EcoGrid –Access to ecology data and tools – middle-/underware Architecture Overview (cf. Cyberinfrastructure)
5
B. Ludäscher et al. – Grid-Enabling Kepler 5 Ecology: GARP Analysis Pipeline for Invasive Species Prediction Training sample (d) GARP rule set (e) Test sample (d) Integrated layers (native range) (c) Species presence & absence points (native range) (a) EcoGrid Query EcoGrid Query Layer Integration Layer Integration Sample Data + A3 + A2 + A1 Data Calculation Map Generation Validation User Validation Map Generation Integrated layers (invasion area) (c) Species presence &absence points (invasion area) (a) Native range prediction map (f) Model quality parameter (g) Environmental layers (native range) (b) Generate Metadata Archive To Ecogrid Registered Ecogrid Database Registered Ecogrid Database Registered Ecogrid Database Registered Ecogrid Database Environmental layers (invasion area) (b) Invasion area prediction map (f) Model quality parameter (g) Selected prediction maps (h) Source: NSF SEEK (Deana Pennington et. al, UNM)
6
B. Ludäscher et al. – Grid-Enabling Kepler 6 Genomics Example: Promoter Identification Workflow (PIW) Source: Matt Coleman (LLNL)
7
B. Ludäscher et al. – Grid-Enabling Kepler 7 Source: NIH BIRN (Jeffrey Grethe, UCSD)
8
B. Ludäscher et al. – Grid-Enabling Kepler 8 Scientific “Workflows”: Some Findings More dataflow than (business control-/) workflow –DiscoveryNet, Kepler, SCIRun, Scitegic, Taverna, Triana,, …, Need for “programming extension” –Iterations over lists (foreach); filtering; functional composition; generic & higher-order operations (zip, map(f), …) Need for abstraction and nested workflows Need for data transformations (WS1 DT WS2) Need for rich user interaction & workflow steering: –pause / revise / resume –select & branch; e.g., web browser capability at specific steps as part of a coordinated SWF Need for high-throughput transfers (“grid-enabling”, “streaming”) Need for persistence of intermediate products and provenance
9
B. Ludäscher et al. – Grid-Enabling Kepler 9 Scientific “Workflows” vs Business Workflows Scientific “Workflows” –Dataflow and data transformations –Data problems: volume, complexity, heterogeneity –Grid-aspects Distributed computation Distributed data –User-interactions/WF steering –Data, tool, and analysis integration Dataflow and control-flow are married! Business Workflows (BPEL4WS …) –Task-orientation: travel reservations; credit approval; BPM; … –Tasks, documents, etc. undergo modifications (e.g., flight reservation from reserved to ticketed), but modified WF objects still identifiable throughout –Complex control flow, complex process composition (danger of control flow/dataflow “spaghetti”) Dataflow and control-flow are divorced!
10
B. Ludäscher et al. – Grid-Enabling Kepler 10 In a Flux: Workflow “Standards” Source: W.M.P. van der Aalst et al. http://tmitwww.tm.tue.nl/research/patterns/ http://tmitwww.tm.tue.nl/staff/wvdaalst/Publications/publications.html Source: W.M.P. van der Aalst et al. http://tmitwww.tm.tue.nl/research/patterns/ http://tmitwww.tm.tue.nl/staff/wvdaalst/Publications/publications.html
11
B. Ludäscher et al. – Grid-Enabling Kepler 11 Commercial & Open Source Scientific “Workflow” (well Dataflow ) Systems Kensington Discovery Edition from InforSense Taverna Triana
12
B. Ludäscher et al. – Grid-Enabling Kepler 12 SCIRun : Problem Solving Environments for Large-Scale Scientific Computing SCIRun: PSE for interactive construction, debugging, and steering of large-scale scientific computations New collaboration under Kepler/SDM Component model, based on generalized dataflow programming Steve Parker (cs.utah.edu)
13
Our Starting Point: Ptolemy II & Dataflow Process Networks see!see! try!try! read!read! Source: Edward Lee et al. http://ptolemy.eecs.berkeley.edu/ptolemyII/
14
B. Ludäscher et al. – Grid-Enabling Kepler 14 Why Ptolemy II? Ptolemy II Objective: –“ The focus is on assembly of concurrent components. The key underlying principle in the project is the use of well-defined models of computation that govern the interaction between components. A major problem area being addressed is the use of heterogeneous mixtures of models of computation. ” Data & Process oriented: Dataflow process networks Natural Data Streaming Support User-Orientation –“application-ware”, not middle-/under-ware) –Workflow design & exec console (Vergil GUI) PRAGMATICS –mature, actively maintained, well-documented (500+pp) –open source system –developed across multiple projects (NSF/ITRs SEEK and GEON, DOE SciDAC SDM, …) –hoping to leverage e-sister projects (e.g. Taverna, …)
15
B. Ludäscher et al. – Grid-Enabling Kepler 15 Dataflow Process Networks: Putting Computation Models (“Orchestration”) first! Synchronous Dataflow Network (SDF) – Statically schedulable single-threaded dataflow Can execute multi-threaded, but the firing-sequence is known in advance –Maximally well-behaved, but also limited expressiveness Process Network (PN) –Multi-threaded dynamically scheduled dataflow –More expressive than SDF (dynamic token rate prevents static scheduling) –Natural streaming model Other Execution Models (“Domains”) –Implemented through different “ Directors ” actor typed i/o ports FIFO advanced push/pull
16
B. Ludäscher et al. – Grid-Enabling Kepler 16 Source: Edward Lee et al. http://ptolemy.eecs.berkeley.edu/ptolemyII/ Actor-/Dataflow Orientation vs Object-/ Control flow Orientation
17
B. Ludäscher et al. – Grid-Enabling Kepler 17 Marrying or Divorcing Control- & Dataflow Source: Edward Lee et al. http://ptolemy.eecs.berkeley.edu/ptolemyII/
18
B. Ludäscher et al. – Grid-Enabling Kepler 18 Overview: Scientific Workflows in Kepler Modeling and Workflow Design Web services = individual components (“actors”) “Minute-Made” Application Integration: –Plugging-in and harvesting web service components is easy, fast Rich SWF modeling semantics (“directors”): –Different and precise dataflow models of computation –Clear and composable component interaction semantics Web service composition and application integration tool Coming soon: –Shrinked wrapped, pre-packaged “Kepler-to-Go” –Structural and semantic typing (better design support) –Grid-enabled web services (for big data, big computations,…) –Different deployment models (web service, web site, applet, …)
19
B. Ludäscher et al. – Grid-Enabling Kepler 19 The KEPLER GUI: Vergil (Steve Neuendorffer, Ptolemy II) Drag and drop utilities, director and actor libraries.
20
B. Ludäscher et al. – Grid-Enabling Kepler 20 Running a Genomics WF (Ilkay Altintas, SDM)
21
B. Ludäscher et al. – Grid-Enabling Kepler 21 Support for Multiple Workflow Granularities Boulders Abstraction: Sand to Rocks Sand Powder Plumbing
22
B. Ludäscher et al. – Grid-Enabling Kepler 22 Directors and Combining Different Component Interaction Semantics Source: Edward Lee et al. http://ptolemy.eecs.berkeley.edu/ptolemyII/
23
B. Ludäscher et al. – Grid-Enabling Kepler 23 Application Examples: Mineral Classification with Kepler … (Efrat Jaeger, GEON)
24
B. Ludäscher et al. – Grid-Enabling Kepler 24 … inside the Classifier
25
B. Ludäscher et al. – Grid-Enabling Kepler 25 Standard BrowserUI: Client-Side SVG
26
B. Ludäscher et al. – Grid-Enabling Kepler 26 SWF Reengineering (Ashraf, Efrat, Kai, GEON)
27
B. Ludäscher et al. – Grid-Enabling Kepler 27 DataMapper Sub-Workflow
28
B. Ludäscher et al. – Grid-Enabling Kepler 28 Result launched via BrowserUI actor (coupling with ESRI’s ArcIMS)
29
B. Ludäscher et al. – Grid-Enabling Kepler 29 Distributed Workflows in KEPLER Web and Grid Service plug-ins –WSDL (now) and Grid services (stay tuned …) –ProxyInit, GlobusGridJob, GridFTP, DataAccessWizard –SSH, SCP, SDSC SRB, OGS?-???… coming WS Harvester –Import query-defined WS operations as Kepler actors XSLT and XQuery Data Transformers –to link not “designed-to-fit” web services WS-deployment interface (planned)
30
B. Ludäscher et al. – Grid-Enabling Kepler 30 Generic Web Service Actor (Ilkay Altintas) Given a WSDL and the name of an operation of a web service, dynamically customizes itself to implement and execute that method. Configure - select service operation
31
B. Ludäscher et al. – Grid-Enabling Kepler 31 Set Parameters and Commit Set parameters and commit
32
B. Ludäscher et al. – Grid-Enabling Kepler 32 Specialized WS Actor (after instantiation)
33
B. Ludäscher et al. – Grid-Enabling Kepler 33 Web Service Harvester (Ilkay Altintas, SDM) Imports the web services in a repository into the actor library. Has the capability to search for web services based on a keyword.
34
B. Ludäscher et al. – Grid-Enabling Kepler 34 Composing 3 rd -Party WSs (NMI, Steve Mock) Output of previous web service User interaction & Transformations Input of next web service
35
B. Ludäscher et al. – Grid-Enabling Kepler 35 A Special Generic Ingestion Actor for EML Data (SEEK, Chad Berkley) Ingests any data format described by EML metadata Converts raw data to Ptolemy format Data can then be operated on with other actors
36
B. Ludäscher et al. – Grid-Enabling Kepler 36 Wrapping Legacy Applications
37
B. Ludäscher et al. – Grid-Enabling Kepler 37 Promoter Identification Workflow (PIW) Source: Matt Coleman (LLNL)
38
B. Ludäscher et al. – Grid-Enabling Kepler 38 Promoter Identification Workflow in Ptolemy-II [SSDBM’03] Execution Semantics
39
B. Ludäscher et al. – Grid-Enabling Kepler 39 hand-crafted control solution; also: forces sequential execution! designed to fit hand-crafted Web-service actor Complex backward control-flow No data transformations available
40
B. Ludäscher et al. – Grid-Enabling Kepler 40 Promoter Identification Workflow in FP genBankG :: GeneId -> GeneSeq genBankP :: PromoterId -> PromoterSeq blast :: GeneSeq -> [PromoterId] promoterRegion :: PromoterSeq -> PromoterRegion transfac :: PromoterRegion -> [TFBS] gpr2str :: (PromoterId, PromoterRegion) -> String d0 = Gid "7" -- start with some gene-id d1 = genBankG d0 -- get its gene sequence from GenBank d2 = blast d1 -- BLAST to get a list of potential promoters d3 = map genBankP d2 -- get list of promoter sequences d4 = map promoterRegion d3 -- compute list of promoter regions and... d5 = map transfac d4 --... get transcription factor binding sites d6 = zip d2 d4 -- create list of pairs promoter-id/region d7 = map gpr2str d6 -- pretty print into a list of strings d8 = concat d7 -- concat into a single "file" d9 = putStr d8 -- output that file
41
B. Ludäscher et al. – Grid-Enabling Kepler 41 Cleaned up Process Network PIW Back to purely functional dataflow process network (= also a data streaming model !) Re-introducing map ( f ) to Ptolemy- II (was there in PT Classic) no control-flow spaghetti data-intensive apps free concurrent execution free type checking automatic support to go from piw(GeneId) to PIW := map (piw) over [GeneId] map (f)-style iterators Powerful type checking Generic, declarative “programming” constructs Generic data transformation actors Forward-only, abstractable sub- workflow piw(GeneId)
42
B. Ludäscher et al. – Grid-Enabling Kepler 42 Optimization by Declarative Rewriting I PIW as a declarative, referentially transparent functional process optimization via functional rewriting possible e.g. map(f o g) = map(f) o map(g) Technical report &PIW specification in Haskell map(f o g) instead of map(f) o map(g) Combination of map and zip http://kbis.sdsc.edu/SciDAC-SDM/scidac-tn-map-constructs.pdf
43
B. Ludäscher et al. – Grid-Enabling Kepler 43 Optimizing II: Streams & Pipelines Clean functional semantics facilitates algebraic workflow (program) transformations (Bird-Meertens); e.g. mapS f mapS g mapS ( f g ) Source: Real-Time Signal Processing: Dataflow, Visual, and Functional Programming, Hideki John Reekie, University of Technology, Sydney
44
Middle/Underware Access: Querying Databases Database connection actor: –Opening a database connection and passing it to all actors accessing this database. Database query actor: –A generic actor that queries a database and provides its result. DBConnection type and DBConnectionToken: –A new IOPort type and a token to distinguish a database connection from any general type.
45
Database Connection Actor OpenDBConnection actor: – Input : database connection information – Output : DBConnectionToken (reference to a DB connection instance, via a DBConnection output port)
46
Database Query Actor Database Query actor: – Input : SQL query string and a DB connection token – Parameters : output type: XML, Record, or String tuple-at-a-time vs set-at-a-time – Process : execute query produce results according to parameters
47
Querying Example
48
B. Ludäscher et al. – Grid-Enabling Kepler 48 An (oversimplified) Model of the Grid Hosts : {h1, h2, h3, …} Data @ Hosts : d1@{h i }, d2@{h j }, … Functions @ Hosts : f1@{h i }, f2@{h j }, … Given : data/workflow: … as a functional plan: […; Y := f(X); Z := g(Y); …] … as a logic plan: […; f(X,Y) g(Y,Z); …] Find Host Assignment : d i h i, f j h j for all d i, f j … s.t. […; d3@h3 := f@h2(d1@h1), …] is a valid plan f g X Y Z
49
B. Ludäscher et al. – Grid-Enabling Kepler 49 Shipping and Handling Algebra (SHA) f@A x@b y@c f@A x@b y@c f@A x@b y@c f@A x@b y@c plan Y@C = F@A of X@B = 1.[ X@B to A, Y@A := F@A(X@A), Y@A to C ] 2.[ F@A => B, Y@B := F@B(X@B), Y@B to C ] 3.[ X@B to C, F@A => C, Y@C := F@C(X@C) ] Logical view Physical view: SHA Plans (1) (3) (2)
50
B. Ludäscher et al. – Grid-Enabling Kepler 50 Grid-Enabling PTII: Handles AB GAGB 1.A GA: get_handle 2.GA A: return &X 3.A B: send &X 4.B GB: request &X 5.GB GA: request &X 6.GA GB: send *X 7.GB B: send done(&X) Example : &X = “GA.17” *X = Candidate Formalisms : GridFTP SSH, SCP SDSC SRB OGS?-??? … WSRF? 1 2 3 4 5 6 7 Kepler space Grid space Logical token transfer (3) requires get_handle(1,2); then exec_handle(4,5,6,7) for completion.
51
B. Ludäscher et al. – Grid-Enabling Kepler 51 Extensions : Semantic Type Take concepts and relationships from an ontology to “semantically type” the data-in/out ports Application: e.g., design support: –smart/semi-automatic wiring, generation of “massaging actors” m 1 (normalize) p3p3 p4p4 Takes Abundance Count Measurements for Life Stages Returns Mortality Rate Derived Measurements for Life Stages
52
B. Ludäscher et al. – Grid-Enabling Kepler 52
53
B. Ludäscher et al. – Grid-Enabling Kepler 53
54
B. Ludäscher et al. – Grid-Enabling Kepler 54 Semantic Types The semantic type signature –Type expressions over the (OWL) ontology m 1 (normalize) p3p3 p4p4 SemType m1 :: Observation & itemMeasured.AbundanceCount & hasContext.appliesTo.LifeStageProperty -> DerivedObservation & itemMeasured.MortalityRate & hasContext.appliesTo.LifeStageProperty
55
B. Ludäscher et al. – Grid-Enabling Kepler 55 Extended Type System (here: OWL Semantic Types) SemType m1 :: Observation & itemMeasured.AbundanceCount & hasContext.appliesTo.LifeStageProperty DerivedObservation & itemMeasured.MortalityRate & hasContext.appliesTo.LifeStageProperty Substructure association: XML raw-data =(X)Query=> object model =link => OWL ontology
56
B. Ludäscher et al. – Grid-Enabling Kepler 56 Semantic Types for Scientific Workflows
57
B. Ludäscher et al. – Grid-Enabling Kepler 57 Deriving Data Transformations from Semantic Service Registration [Bowers-Ludaescher, DILS’04]
58
B. Ludäscher et al. – Grid-Enabling Kepler 58 Structural and Semantic Mappings [Bowers-Ludaescher, DILS’04]
59
B. Ludäscher et al. – Grid-Enabling Kepler 59 Workflow Planning as Planning Queries with Limited Access Patterns User query Q : answer(ISBN, Author, Title) book(ISBN, Author, Title), catalog(ISBN, Author), not library(ISBN). Limited (web service) Access Patterns (API) –Src1.books: in : ISBN out : Author, Title –Src1.books: in : Author out : ISBN, Title –Src2.catalog: in : {} out : ISBN, Author –Src3.library: in : {} out : ISBN Q is not executable, but feasible (equivalent to executable Q’: catalog ; book ; not library) ICDE (poster), EDBT, PODS (papers), [Nash-Ludaescher,2004]
60
B. Ludäscher et al. – Grid-Enabling Kepler 60 Conclusions Summary – Kepler Scientific Workflow System – Open source, cross-project collaboration (SEEK, GEON, SDM,…) –Actor & Dataflow-oriented Modeling, Design, Execution ( Ptolemy II heritage) –Prototyping, static analysis, web services, data transformations Next Steps –First official release (“Kepler-to-Go”) April/May ’04 e-Science meeting NeSC, Edinburgh –Grid-enabling 3 rd party transfer, planning, optimization, … –Semantic Typing [DILS’04] –Provenance, Fault tolerance, … –Link-Up w/ e.g. Taverna, Pegasus, … –Become a member or co-developer (You!)
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.