Download presentation
Presentation is loading. Please wait.
Published byLesley Douglas Modified over 9 years ago
1
Exercise Simplify 5x + 3y – x + 10y. 4x + 13y
2
Simplify 74 – 5m – 2m – 8. – 7m + 66 Exercise
3
Simplify 14w + 23 – 16n. already in simplified form Exercise
4
Simplify 17t – 6q + t + 8r. – 6q + 8r + 18t Exercise
5
Which property is used to add like terms? Distributive Property Exercise
6
2x + 5x 2 √ 7 + 5 √ 7
7
√ a √ b = √ ab √ a + √ b ≠ √ a + b but
8
Simplify 6 √ 7 + 3 √ 2 – 2 √ 7. 6 √ 7 + 3 √ 2 – 2 √ 7 = 6 √ 7 – 2 √ 7 + 3 √ 2 = (6 – 2) √ 7 + 3 √ 2 = 4 √ 7 + 3 √ 2 Example 1
9
Simplify 4 √ 2 – 3 √ 5 + 2 √ 7. No simplification is possible. Unlike terms cannot be simplified further. Example 2
10
Simplify 3 √ 5 + 2 √ 5. 5 √ 55 √ 55 √ 55 √ 5 Example
11
Simplify 5 √ 11 + 3 √ 11. 8 √ 11 Example
12
Simplify 2 √ 3 + 3 √ 2 – 5 √ 2. 2 √ 3 – 2 √ 2 Example
13
Simplify 8√5 + 2√6 – √5 + 3√6. 7 √ 5 + 5 √ 6 Example
14
Simplify 3 √ 2 + 2 √ 5 – 3 √ 3. 3 √ 2 + 2 √ 5 – 3 √ 3 Example
15
Simplify 5 √ 12 + 3 √ 12 – √ 12. 14 √ 3 Example
16
2 √ 12 + 8 √ 3
17
Simplify √ 27 + √ 12. √ 27 + √ 12 = √ 3 × 3 × 3 + √ 2 × 2 × 3 = (3 + 2) √ 3 = 5 √ 3 = 3 √ 3 + 2 √ 3 Example 3
18
Simplify 3√ 8 – 2 √ 18 – √ 12 + 4 √ 50. = 3 √ 2 × 2 × 2 + 2 √ 2 × 3 × 3 – √ 2 × 2 × 3 + 4 √ 2 × 5 × 5 = 6 √ 2 – 6 √ 2 – 2 √ 3 + 20 √ 2 = (6 – 6 + 20) √ 2 – 2 √ 3 = 20 √ 2 – 2 √ 3 Example 4
19
Simplify 3 √ 12 + 2 √ 75. 16 √ 3 Example
20
Simplify 5 √ 2 + 3 √ 8 – √ 32. 7 √ 27 √ 27 √ 27 √ 2 Example
21
Simplify 3 √ 2 (√ 18 + √ 50 ). 48 Example
22
Simplify. 5 √ 12 + 3 √ 27 √ 3√ 3√ 3√ 3 19 Example
23
Simplify 3 √ 2 (2 √ 3 + 4 √ 2 ). 6 √ 6 + 24 Exercise
24
Simplify √ 6 (3 √ 7 – 5 √ 3 ). 3 √ 42 – 15 √ 2 Exercise
25
Simplify √ 24 ( √ 30 + √ 6 ). 12 √ 5 + 12 Exercise
26
Simplify 4√ 12 (3√ 32 + 5√ 18 ). 216 √ 6 Exercise
27
Simplify. 7 √ 15 – 2 √ 15 √ 15 55 Exercise
28
Simplify. 10 √ 26 – 5 √ 39 5 √ 13 2 √ 2 – √ 3 Exercise
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.