Download presentation
Presentation is loading. Please wait.
Published byDamian McDaniel Modified over 9 years ago
1
ISQA 459/559 Advanced Forecasting Mellie Pullman
2
30 Recall Forecast Error Measurements MFE: mean forecast error MAD: mean absolute deviation
3
Best Error Measurement (What it the problem with the MAD calculation as an error measurement for long histories?) 365 days Averaged ?
4
Solution? Smoothed MAD Phi () is a smoothing parameter, which is set in advance. It is important that we fix (set) phi BEFORE we try to find the best forecasting method. Why?
5
Phi Phi controls the period of time over which we are evaluating forecast accuracy--the smaller the value of phi, the larger the number of historical periods that are considered in the measurement of the "average" forecast error. What effect would changing phi have while you are trying to compare the accuracy of two different forecasting methods?
6
Suggested Values for Phi Forecasting IntervalGood Values of Phi Daily.02 (149 days).03 (99 days).04 (74 days).05 (59 days).10 (29 days) Weekly.05 (59 weeks).10 (29 weeks).15 (19 weeks).20 (14 weeks) Monthly.10 (29 months).15 (19 months).20 (14 months).25 (11 months).30 (9 months)
7
Phi0.3 MonthDemandForecast ErrorMAD ----- 1200200.00.0 2134200.0-66.019.8 3157180.2-23.220.8 4165173.2-8.217.0 5177170.86.213.8 6125172.6-47.624.0 7146158.3-12.320.5 8150154.6-4.615.7 9182153.228.819.6 10197161.935.124.3 11136172.4-36.427.9 12163161.51.520.0 13157161.9-4.915.5 14169160.58.513.4 --------- TOTALS2258.02381.3-123.3252.3
8
QuarterYear 1Year 2Year 3Year 4 14570100100 2335370585725 35205908301160 4100170285215 Total1000120018002200 Average250300450550 Seasonal Index/Factor We estimate 2600 for Year 5 but need to know how many to make each quarter.
9
Seasonal Factor Method
10
QuarterYear 1Year 2Year 3Year 4 145/250 = 0.1870100100 2335370585725 35205908301160 4100170285215 Total1000120018002200 Average250300450550 Seasonal Index = = 0.18 45 250 Seasonal Index/Factor
11
Quarter Year 1 Year 2 Year 3 Year 4 145/250 = 0.1870/300 = 0.23100/450 = 0.22100/550 = 0.18 2335/250 = 1.34370/300 = 1.23585/450 = 1.30725/550 = 1.32 3520/250 = 2.08590/300 = 1.97830/450 = 1.841160/550 = 2.11 4100/250 = 0.40170/300 = 0.57285/450 = 0.63215/550 = 0.39 QuarterAverage Seasonal Index 1(0.18 + 0.23 + 0.22 + 0.18)/4 = 0.20 2(1.34 + 1.23 + 1.30 + 1.32)/4 = 1.30 3(2.08 + 1.97 + 1.84 + 2.11)/4 = 2.00 4(0.40 + 0.57 + 0.63 + 0.39)/4 = 0.50 Seasonal Index/Factor
12
Quarter Year 1 Year 2 Year 3 Year 4 145/250 = 0.1870/300 = 0.23100/450 = 0.22100/550 = 0.18 2335/250 = 1.34370/300 = 1.23585/450 = 1.30725/550 = 1.32 3520/250 = 2.08590/300 = 1.97830/450 = 1.841160/550 = 2.11 4100/250 = 0.40170/300 = 0.57285/450 = 0.63215/550 = 0.39 QuarterAverage Seasonal IndexForecast 1(0.18 + 0.23 + 0.22 + 0.18)/4 = 0.20650(0.20) =130 2(1.34 + 1.23 + 1.30 + 1.32)/4 = 1.30650(1.30) =845 3(2.08 + 1.97 + 1.84 + 2.11)/4 = 2.00650(2.00) =1300 4(0.40 + 0.57 + 0.63 + 0.39)/4 = 0.50650(0.50) =325 Seasonal Influences
13
In- Class Problem: Forecast Year 3 (Overall forecast = 1500) Qtr Year 1Year 2 Average Index DemandIndexDemandIndex 1100192 2400408 3300384 4200216 Avg
14
Decomposition of Season & Trend Decompose the data into components Find seasonal component Deseasonalize demand Find Trend component Forecast future values of each component Project Trend component into future Multiply trend component by seasonal component
15
Example of Deseasonalized Data
16
Project Future and Re-seasonalize
17
Options for Brewery Case that use regression and/or seasonal adjustment? Using Yearly Data to start? Using Monthly data to start?
18
Trend-Adjusted Exponential Smoothing ||||||||||||||| 0123456789101112131415 80 — 70 — 60 — 50 — 40 — 30 — Guest arrivals Week Actual room requests
19
Trend-Adjusted Exponential Smoothing
20
||||||||||||||| 0123456789101112131415 80 — 70 — 60 — 50 — 40 — 30 — Guest arrivals Week Guest Arrivals A t = D t + (1 - )(A t-1 + T t-1 ) T t = (A t - A t-1 ) + (1 - )T t-1
21
Trend-Adjusted Exponential Smoothing ||||||||||||||| 0123456789101112131415 80 — 70 — 60 — 50 — 40 — 30 — Guest arrivals Week A 1 = 0.2(27) + 0.80(28 + 3)= 30.2 T 1 = 0.2(30.2 - 28) + 0.80(3)= 2.8 Guest Arrivals A 0 = 28 g D 1 = 27 g T 0 = 3 g = 0.20 = 0.20 A t = D t + (1 - )(A t-1 + T t-1 ) T t = (A t - A t-1 ) + (1 - )T t-1
22
Trend-Adjusted Exponential Smoothing ||||||||||||||| 0123456789101112131415 80 — 70 — 60 — 50 — 40 — 30 — Guest arrivals Week A 1 = 30.2 T 1 = 2.8 Guest Arrivals A 0 = 28 guests T 0 = 3 guests = 0.20 = 0.20 A t = D t + (1 - )(A t-1 + T t-1 ) T t = (A t - A t-1 ) + (1 - )T t-1 Forecast 2 = 30.2 + 2.8 = 33
23
Trend-Adjusted Exponential Smoothing ||||||||||||||| 0123456789101112131415 80 — 70 — 60 — 50 — 40 — 30 — Guest arrivals Week Guest Arrivals A 1 = 30.2 D 2 = 44 T 1 = 2.8 = 0.20 = 0.20 A t = D t + (1 - )(A t-1 + T t-1 ) T t = (A t - A t-1 ) + (1 - )T t-1 A 2 = T 2 = Forecast =
24
Trend-Adjusted Exponential Smoothing ||||||||||||||| 0123456789101112131415 80 — 70 — 60 — 50 — 40 — 30 — Guest arrivals Week Guest Arrivals A 1 = 30.2 D 2 = 44 T 1 = 2.8 = 0.20 = 0.20 A t = D t + (1 - )(A t-1 + T t-1 ) T t = (A t - A t-1 ) + (1 - )T t-1 A 2 = 35.2 T 2 = 3.2 Forecast = 35.2 + 3.2 = 38.4
25
Trend-Adjusted Exponential Smoothing ||||||||||||||| 0123456789101112131415 80 — 70 — 60 — 50 — 40 — 30 — Guest arrivals Week Trend-adjusted forecast Actual guest arrivals
26
In Class Exercise A mar = 300,000 cases; T mar = +8,000 cases D apr = 330,000 cases; = 0.20 =.10 What are the forecasts for May and July?
27
The End
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.