Download presentation
Presentation is loading. Please wait.
Published byMadeline Wentworth Modified over 11 years ago
1
Le tecnologie dellallarme precoce e la gestione dei rischi naturali La gestione del tempo nella prevenzione dei rischi naturali Venerdì 28 Novembre 2003 Institut français de Naples Le Grenoble Paolo Gasparini Dipartimento di Scienze Fisiche Università di Napoli Federico II CRdC – AMRA Le tecnologie dellallarme precoce e la gestione dei rischi naturali
2
Le tecnologie dellallarme precoce e la gestione dei rischi naturali actions lead time catastrophic event to mitigate its effects All the actions which can be carried out during the lead time of a catastrophic event in order to mitigate its effects. EARLY WARNING
3
Le tecnologie dellallarme precoce e la gestione dei rischi naturali The time elapsing from the moment when the occurrence of a catastrophic event is reasonably certain till the moment the event really occurs. LEAD TIME
4
Le tecnologie dellallarme precoce e la gestione dei rischi naturali Event Source Considered area Propagation Path
5
Le tecnologie dellallarme precoce e la gestione dei rischi naturali AUTOMATIC EARTHQUAKES: seconds to tens of seconds TSUNAMIS: minutes to hours METEROLOGICAL EVENTS: hours to days FLOODS AND LANDSLIDES: hours to days VOLCANIC ERUPTIONS: hours to weeks ALERT + INFORMATION COPING CAPACITY TYPICAL LEAD TIMES MOST SIGNIFICANT ACTIONS
6
Le tecnologie dellallarme precoce e la gestione dei rischi naturali CHRONOLOGY 1855: 1855: Palmieri seismograph 1868: 1868: The Concept of an early warning system was proposed by J.D. Cooper for San Francisco. 1880 1880 Milne seismograph 1885 1885 Theory of Rayleigh surface waves 1899 1899 Oldham and Wiechert identify P and S waves as elastic waves 1910 1910 Reid elastic rebound theory for the 1906 San Francisco earthquake 1911 1911 Theory and identification of Love surface waves 1935 1935 Richter Magnnitude scale 1965 1965: Japan national railways installed an instrumental early warning system to protect the Tohoku Shinkansen line (threshold at PGA = 0.04 g at 5 Hz) 1982 1982: Implementation of the improved UrEDAS system (detection of P-waves) to protect the Tokado Shinkansen line and since 1992 in California (1994 Northridge earthquake) 1992 1992: Implementation of Seismic Alert System for Mexico City 1994 1994: CUBE and REDI seismic warning systems in Southern and Northern California 1996 1996: Implementation of the Taiwan Rapid Earthquake Information System SEISMIC EARLY WARNING
7
Le tecnologie dellallarme precoce e la gestione dei rischi naturali - TRINET Project in Southern California - Feasibility study for Istanbul - Feasibility study for Bucharest - Feasibility study for Armenia SYSTEMS IN PROGRESS
8
Le tecnologie dellallarme precoce e la gestione dei rischi naturali
9
Le tecnologie dellallarme precoce e la gestione dei rischi naturali Japan Shinkansen lines Japan Shinkansen lines = 0 to 10 s Mexico City Mexico City = 65 - 72 s Taiwan Taiwan = tens of s Istanbul Istanbul = 0 to 70 s Bucharest Bucharest = 25 s TYPICAL LEAD TIMES
10
Le tecnologie dellallarme precoce e la gestione dei rischi naturali INDUSTRY Sensitive industries - Life lines Computer facilities - High tech industry PUBLIC WARNING Schools - Media Business centres - Hospital Emergency services Disaster Management Relief Organisations TRASPORTATION Bridges – metro Trains - Aeroplanes
11
Le tecnologie dellallarme precoce e la gestione dei rischi naturali Seismic network to detect the signals; - Data processing system to identify location and magnitude of the earthquake; - Warning information transmitter; - Warning information receiver and processor; - Automatic system. SEISMIC EARLY WARNING INSTRUMENTS
12
Le tecnologie dellallarme precoce e la gestione dei rischi naturali
13
Le tecnologie dellallarme precoce e la gestione dei rischi naturali Japan: installed along all rail tracks shut off power when horizontal acceleration exceeds a threshold Front detection: deployed along coast gives ~15 sec warning I. Alarm seismometers II. UrEDAS event parameters determined from the P-arrival Protecting Bullet Trains
14
Le tecnologie dellallarme precoce e la gestione dei rischi naturali Japan: Protecting Bullet Trains 1. Trigger on P-arrivals 2. Use predominant period in first 3 seconds to determine magnitude 3. Knowing the magnitude and amplitude, epicentral distance is estimated 4. Azimuth of P-arrival and epicentral distance gives event location At P-arrival + 3 sec have an estimate of event location and magnitude 5. S minus P time used to improve the epicentral distance estimate …switching to event parameter determination from the P-arrival II. UrEDAS
15
Le tecnologie dellallarme precoce e la gestione dei rischi naturali Seismic Alert System: Mexico City developed in 1989 in the wake of the 1985 Michoacan earthquake 12 stations along coast station data transmitted to central processing in Mexico City warning issued when two stations indicate an event greater than magnitude 5 ~300 km allows ~60 sec warning 300 km Front detection
16
Le tecnologie dellallarme precoce e la gestione dei rischi naturali
17
Le tecnologie dellallarme precoce e la gestione dei rischi naturali Guerrero earthquake magnitude 7.3 event successfully detected and an alert issued 72 sec warning no real damage in Mexico City September 14, 1995
18
Le tecnologie dellallarme precoce e la gestione dei rischi naturali Taiwan: Use classical network processing approach: P-arrival used for event detection and conformation S-arrival needed for magnitude determination Wu and Teng, 2002 use sub-nets to reduce wait time (circles on map) System processing time: 20-30 seconds Earthquake early warning
19
Le tecnologie dellallarme precoce e la gestione dei rischi naturali Chi-Chi earthquake: Wu and Teng, in press Example of how the system would have worked for this event: Warning issued after 22 sec Useful for regions more than 75km from epicenter September 20, 1999 magnitude 7.6 2,456 casualties Triangles represent population distribution warning times
20
Le tecnologie dellallarme precoce e la gestione dei rischi naturali 135 available stations with: broadband and strong motion sensors capable of on-site processing parameter transit times < 1sec TriNet 1. Seismic infrastructure
21
Le tecnologie dellallarme precoce e la gestione dei rischi naturali ElarmS timeline Earthquake alarm system
22
Le tecnologie dellallarme precoce e la gestione dei rischi naturali ElarmS capabilities Summary: We are currently testing ElarmS, it will: provide 0 to 2 seconds warning of peak ground motion to people directly above the earthquake epicenter provide approx. 10 seconds warning to people 30 km from the epicenter The certainty of the predicted ground motion increases as the warning time decrease. users must decide their uncertainty tolerance and their sensitivity to warning time
23
Le tecnologie dellallarme precoce e la gestione dei rischi naturali ISTANBUL
24
Le tecnologie dellallarme precoce e la gestione dei rischi naturali Potential Sources for Earthquakes larger than M 5.5 in Italy Integrated Seismogenic Source dataset and Tectonic Lineaments
25
Le tecnologie dellallarme precoce e la gestione dei rischi naturali Accelerometers and high frequency seism Accelerometers and broad band seism CRdC-AMRA MULTICOMPONENT SEISMIC NETWORK
26
Le tecnologie dellallarme precoce e la gestione dei rischi naturali Lions Gate Bridge
27
Le tecnologie dellallarme precoce e la gestione dei rischi naturali Rete Nazionale dei Gasdotti
28
Le tecnologie dellallarme precoce e la gestione dei rischi naturali Ignalina nuclear power plant (Lithuania)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.