Download presentation
Presentation is loading. Please wait.
Published byCarol Johns Modified over 9 years ago
1
1 學生 : 曹嘉榮 指導老師 : 于淑君 博士 Synthesis, Characterization and Catalytic Application of Aminodipyridylphosphine Oxide Copper(II) Complex and Its Supported Form on Gold Nanoparticles
2
2 Phosphine Ligand Phosphines are electronically and sterically tunable. Drawbacks and Limitations Expensive. Triphenylphosphine $20.3 USD(1g) ReagentPlus ®,99% (Sigma-Aldrich) Chemical waste. Air and thermal instability. a. Oxidation b. Metal Leaching Kinzel, E. J. Chem. Soc. Chem. Commun. 1986 1098. To develop bipyridne lignad to replace phosphine ligand is necessary.
3
3 Hybrid Catalysts
4
4 Characteristics of catalysts HomogenousHeterogeneousHybrid Cat. structureKnownUnknownKnown Catalyst modificationEasyDifficultEasy ActivityHighLowHigh SelectivityHighLowHigh Conditions of catalysisMildHarshMild Poisoning of cat.High riskLow risk Mechanical strengthLowHigh Cat. stabilitiesLowHigh Separation & recycle of cat. DifficultEasy IndustrializationDifficultApplicable Types of Catalysts
5
5 Bulk-Surface I. Metal Oxide : I. Metal Oxide : (SiO 2 ), (Al 2 O 3 ), (zeolite), MCM-41,..etc. II.Silical gel II. Silical gel III. Organic polymer : III. Organic polymer : Polystyrene (PS), Organic Dendrimers IV. Nano particles: IV. Nano particles:
6
6 Metal Oxide-Supported Catalysts Piaggio, P.; McMorn, P.; Murphy, D.; Bethell, D.; Page, P. C. B.; Hancock, F. E.; Sly, C.; Kerton, O. J. ; Hutchings, G. J. J. Chem. Soc., Perkin Trans. 2, 2000, 2008-2015.
7
7 Chem. Rev. 2002, 102, 3275-3300. Polystyrene-Supported Catalysts
8
8 Silica-Supported Catalysts Chem. Rev. 2002, 102, 3495-3524.
9
9 Nanoparticles-Supported Catalysts Pfaltz, A. J. Am. Chem. Soc. 2005, 127, 8720-8731. Ru catalyst for ringopening metathesis polymerization (ROMP) to gold colloids. Tremel. W. Angew. Chem. Int. Ed. 1998, 37, 2466-2568.
10
10 Au NPs with controllable solubility soluble metal complex functional groups coordinationl ligands spacer linker Catalyst Design Au NPs have been known not only to possess solid surfaces resembling the (1 1 1) surface of bulk gold but also to behave like soluble molecules for their dissolvability, precipitability, and redissolvability. Lin, Y.-Y; Tsai, S.-C.; Yu, S. J. J. Org. Chem. 2008, 73, 4920-4928.
11
11 The Catalytic Applications of Cu(II) Diels-Alder Reactions Friedel-Crafts Alkylation Reactions O-arylation of Phenols Oxidation of Alcohols Enantioselective Diels-Alder Reaction Enantioselective Friedel-Crafts Reaction Asymmetric Addition of Dialkylzinc to Imines C-O Bond Formation Asymmetric Arylation of Imines Oxa-Diels-Alder Reaction C-C Bond Formation Thia-Diels-Alder Reaction Goldberg reaction Ullmann, F.; Bielecki, J. Iram Goldberg, Chem. Ber. 1901, 34, 2174.
12
12 Drawbacks of Traditional Copper-mediated Reactions Insoluble in organic solvents - heterogeneous - needed large amount catalyst Harsh reaction conditions - high temperatures around 200 °C - strong bases - toxic solvent such as HMPA - sensitive to functional groups on aryl halides - long reaction times - the yields are often irreproducible The catalyst sructure is not well defined
13
13 Annulation of Phenol Derivatives with 1,3- Dienes to Construct The Chroman Structure Conventional Lewis Acids and Transition Metal Lewis Acids BF 3 -Et 2 O 、 ZnCl 2 、 AlCl 3 、 SnCl 4 、 Sb(OTf) 3 、 Sc(OTf) 3 、 Y(OTf) 3 M. Matsui and H. Yamamoto, Bull.Chem.Soc.Jpn. 1995, 68, 2657-2661. M. Matsui and H. Yamamoto, Bull.Chem.Soc.Jpn. 1995, 68, 2663-2668. on Conventional Br on sted Acids V. K. Ahluwalia and K. K. Arora, J. Chem. Soc., Perkin Trans.1, 1982, 335. F. Bigi, S. Carloni, R. Maggi, C. Muchetti, M. Rastelli and G. Sartori, Synthesis, 1998, 301-304. G. P. Kalena, A. Jain and A. Banerji, Molecules, 1997, 2, 100-105. H 3 PO 4 、 H 2 SO 4 、 Zeolite HSZ-360 Chroman skeleton Drawbacks of these acid promoted processes 1 、 High reaction temperatures are often necessary! 2 、 In most cases, only low to moderate yields of products were reported. Vitamin E
14
14 Construction of The Chroman Structure by Annulation Reactions of ArOH with 1,3-Dienes. R. V. Nguyen, X. Q. Yao and C. J. Li, Org. Lett., 2006, 8, 2397- 2399. S. W. Youn and J. I. Eom, J. Org. Chem., 2006, 71, 6705- 6707. Yamamoto, H. and Itonaga, K, Org. Lett., 2009, 11, 717–720. Cat. CpMoCl(CO) 3 5 mol %
15
15 Motivation Copper is less expensive than other transition metals. - PdCl 2 $269.5 USD(5g) ReagentPlus ® (Aldrich) -NiCl 2 $139 USD(5g) reagent grade (Sigma-Aldrich) - Cu(OTf) 2 $64.7 USD(5g)reagent grade (Sigma-Aldrich) Using bipyridine ligand to replace phosphine ligand in organomatallic catalysis. To study the immobilization of molecular copper(II) complexes on the surfaces of Au NPs by using the covalent linkage via a specially designed bipyridine ligand as spacer linkers. Catalysis under efficient microwave flash heating to replace conventional thermal heating. Easily recovered and effectively recycled copper(II) complexs immobilized onto Au Nanoparticles.
16
16 75 % 193 % 2 Preparation of Aminodipyridylphosphine Oxide Ligand Lin, Y.-Y; Tsai, S.-C.; Yu, S. J. J. Org. Chem. 2008, 73, 4920-4928.
17
17 Synthesis Copper(II) Complex Catalyst Elemental Analysis : Anal. Calcd for C 23 H 32 CuF 6 N 3 O 8 PS 2 (750.06) : C, 36.78; H, 4.29; N, 5.59. Found : C, 36.92; H, 4.36; N, 5.11. IR (KBr) : ν Ring stretching = 1592(s), 1437 (s)
18
18 Synthesis of Spacer-Linker Lin, Y.-Y; Tsai, S.-C.; Yu, S. J. J. Org. Chem. 2008, 73, 4920-4928.
19
19 Synthesis of the RS-Au-L-Cu(OTf) 2 (10) 8 9 10
20
20 IR Spectra of Ligand (2), and Complex (3)
21
21 { [HO(CH 2 ) 11 N(H)P(O)(2-py) 2 ]CuOTf} + = 601 (m/z) Simulated MS Data [M – OTf] + Simulated MS Data [M – 2OTf] + FAB-MS Spectrum of [HO(CH 2 ) 11 N(H)P(O)(2-py) 2 ]Cu(OTf) 2 (3) { [HO(CH 2 ) 11 N(H)P(O)(2-py) 2 ]Cu} + = 452 (m/z) Experimental MS Data [M – OTf] + Experimental MS Data [M – 2OTf] +
22
22 Single-Crystal X-ray Structure of [CH 3 (CH 2 ) 3 N(H)P(O)(2-py) 2 ]Cu(OTf) 2 ( 13 ) Empirical formula C18 H23 Cu F6 N4 O8 P S2 Temperature 100(2) K Space group P -1 Unit cell dimensions a = 26.022(2) Å α = 90°. b = 13.5072(11) Å β = 117.2320°. c = 17.0090(14) Å γ = 90°. Volume5315.8(7) Å 3 Final R indices [I>2sigma(I)] R1 = 0.0410, wR2 = 0.0841 Bond lengths [Å] and Bond angles [deg] Cu(1)-N(1) 1.998 Cu(1)-N(2) 2.020 Cu(1)-O(4) 2.325 N(1)-Cu(1)-N(2) 90.06 N(1)-Cu(1)-O(4) 93.48 N(2)-Cu(1)-O(4) 96.16
23
23 RS-Au-L RS-Au-L-Cu(OTf) 2 (10) RS-Au-L(9) d 6 -DMSO * * # # H2OH2O 1 H NMR Spectra of Au NPs (9) and (10) Py NH -HNCH 2-
24
24 XPS Data of RS-Au-L-Cu(OTf) 2 (10) 83.987.6 4f 5/2 4f 7/2 Manabu FUJIWARAT, et al., Analytical Sciences, 1993, 9, 289-291 11. {3,10-bis(3'-nitrobenzoyl)-4,9-dimethyl-5,8- diazadodeca-4,8-diene-2,11-dionato}copper(II): N 2 O 2.
25
25 IR Spectra of Ligand (7), Au Nanoparticles (9), (10) and Complex (3) 7 9 10 3 1425 cm -1 1437 cm -1 1435 cm -1
26
26 IR Spectra Region Enlargement of Ligand (7), Au Nanoparticles (9), (10) IR Spectra Region Enlargement of Ligand (7), Au Nanoparticles (9), (10)
27
27 TEM Image of Octanethiol Protected Au-SR NPs(8) Particle size distribution 2.68 ± 0.3 nm 8
28
28 TEM Image of RS-Au-L (9) Particle size distribution 3.1 ± 0.25 nm 9
29
29 TEM Image of RS-Au-L-Cu(OTf) 2 (10) Particle size distribution 3.52 ± 1.2 nm 10
30
30 UV-vis Spectra of Ligand (7), and Au Nanoparticles (8), (9) and (10) 517 nm 257 nm 7 8 9 10
31
31 EPR Spectra of Cu(II) Complex (3) and RS-Au-L-Cu(OTf) 2 (10) g ∥ =2.333 g ⊥ =2.082 Evans, D. A.et al. J. Am. Chem. Soc. 1997, 119, 7893-7894. S. Tanaka et al. Journal of Catalysis, 2007, 245,173–183. g ∥ =2.311 g ⊥ =2.074 Anna M. Duda et al. J. Agric. Food Chem., 1996, 44, 3698–3702. g ∥ =2.331 g ⊥ =2.080
32
32 Reported Copper(II) Catalytic Annulation of Phenols with 1,3-Dienes Adrio, L. A.; Hii, K. K. Chem. Commun. 2008, 2325–2327
33
33 EntryPhenolDienesYield(%) a 180 278 360 485 5 63 72 b EntryPhenolDienesYield(%) a 6 57 68 b 770 8 53 66 b 995 1094 Cu(II) Complex 3-Catalyzed Annulation Reactions of ArOH with 1,3-Dienes. General reaction conditions: Phenol/ Naphthol (1 equiv.), Dienes (1.5 equiv.), Catalyst (0.05 equiv.) Solvent = 0.2 mL, 50 o C, 18 h. a Yields were determined by NMR. b. Catalyst (10 mol %).
34
34 EntryPhenolDienesYield(%) a 1172 1270 1365 14 72 b 15 74 c EntryPhenolDienesYield(%) a 1652 1787 1881 1962 2088 General reaction conditions: Phenol/ Naphthol (1 equiv.), Dienes (1.5 equiv.), Catalyst (0.05 equiv.) Solvent = 0.2 mL, 50 o C, 18 h. a Yields were determined by NMR. b. Catalyst (10 mol %). c. Temperature 80 o C. Cu(II) Complex 3-Catalyzed Annulation Reactions of ArOH with 1,3-Dienes
35
35 Proposed Mechanism of Annulation Reactions of ArOH with 1,3-Dienes Proposed Mechanism of Annulation Reactions of ArOH with 1,3-Dienes
36
36 Comparison of Catalytic Activity between Cat. 3 and Cat. 10 EntryPhenolDiene Yield(%) a [HO(CH 2 ) 11 N(H)P(O)(2-py) 2 ]Cu(OTf) 2 (3) Yield(%) a RS-Au-L-Cu(OTf) 2 (10) 12345671234567 7268 6473 6970 7566 4957 6556 6367
37
37 Convection transition Thermal v.s. Microwave Heating Kappe, C. O. Angew. Chem. Int. Ed. 2004, 43, 6250-6284. MicrowaveThermal
38
38 Microwave Assisted Annulation Reactions of ArOH with 1,3-Diene EntryPhenolDiene Yield(%) a [HO(CH 2 ) 11 N(H)P(O)(2-py) 2 ]Cu(OTf) 2 (3) Yield(%) a RS-Au-L-Cu(OTf) 2 (10) 12345671234567 69 (50s)84 (50s) 72 (50s)81 (50s) 78 (50s)87 (50s) 66 (50s)71 (50s) 70 (50s)78 (50s) 71 (50s)76 (50s) 72 (50s)80 (50s) General reaction conditions: Phenol/ Naphthol (1 equiv.), Dienes (1.5 equiv.), Catalyst (0.05 equiv.) a Yields were determined by NMR.
39
39 Au NPs Conducting Microwave and Acting as Hot Spot in Microwave Irradiating Process Temperature after microwave 600 W irradiating for 50 (sec) Room Temperature(22 o C) Blank 23 o C 0.5 mL IL-Bmim-PF 6 164 o C [HO(CH 2 ) 11 N(H)P(O)(2- py) 2 ]Cu(OTf) 2 (3) + 0.5 mL IL-Bmim-PF 6 171 o C RS-Au-L-Cu(OTf) 2 (10) + 0.5 mL IL-Bmim-PF 6 232 o C [HO(CH 2 ) 11 N(H)P(O)(2- py) 2 ]Cu(OTf) 2 (3) + 0.5 mL IL-Bmim-PF 6 Au Nps + [HO(CH 2 ) 11 N(H)P(O)(2- py) 2 ]Cu(OTf) 2 (3) + 0.5 mL IL-Bmim-PF 6 215 o C Microwave 600 W irradiating Time required to reach temperature 120 o C Room Temperature(26 o C) 0.5 mL DMSO 360 (s) [HO(CH 2 ) 11 N(H)P(O)(2- py) 2 ]Cu(OTf) 2 (3) + 0.5 mL DMSO 250 (s) RS-Au-L-Cu(OTf) 2 (10) + 0.5 mL DMSO (homogeneous) 168 (s) [HO(CH 2 ) 11 N(H)P(O)(2- py) 2 ]Cu(OTf) 2 (3) + 0.5 mL DMSO (heterogeneous) Au Nps + [HO(CH 2 ) 11 N(H)P(O)(2- py) 2 ]Cu(OTf) 2 (3) + 0.5 mL DMSO (heterogeneous) 191 (s)
40
40
41
41 Recycling Tests on Cat. 10 for Annulation Reactions of ArOH with 1,3-Dienes. Recycling NO. Time(hr)Conversion (%) (%) 13 99 23 96 33 43 53 95 63 96 73 94 83 97 93 103 113 Filtrate showed no further reactivity
42
42 Conclusions [HO(CH 2 ) 11 N(H)P(O)(2-py) 2 ]Cu(OTf) 2 (3) 1.The air- and water-stable catalyst [HO(CH 2 ) 11 N(H)P(O)(2-py) 2 ]Cu(OTf) 2 (3) was synthesized and characterized by IR, FAB-MS, EPR, XPS, X- ray, EA. 2.We have developed a methodology to successfully immobilize molecular Cu(II) complexes onto surfaces of Au NPs. The structure of the supported Au NPs-S(CH 2 ) 11 N(H)P(O)(2-py) 2 Cu(OTf) 2 (10) catalyst was characterized by 1 H-NMR, IR, TEM, UV, XPS,EPR, AA. 3.We have successfully demonstrated the catalytic activity of the Cu(II) complex for the annulation reactions of ArOH with 1,3-dienes. 4.The successful use of microwave irradiation for the annulation reactions of ArOH with 1,3-dienes to further accelerate reaction rates and to improve conversions. 5.The Au NPs-Cu(II) catalyst (10) can be quantitatively recovered and effectively reused for many times without significant loss of reactivity.
43
43 Standard calibration curve of copper(II) standard solution
44
44
45
45
46
46
47
47 各種物質導熱係數 Material conductivity k (W/m · K) diamond 鑽石 2300 silver 銀 429 copper 銅 401 gold 金 317 aluminum 鋁 237
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.