Presentation is loading. Please wait.

Presentation is loading. Please wait.

Homework

Similar presentations


Presentation on theme: "Homework "β€” Presentation transcript:

1 Homework π’š=𝟎.πŸπŸπŸ’π’™ 𝟐.πŸ‘πŸ— π’š=𝟏.πŸ—πŸ‘π’™ 𝟎.πŸ–πŸ’ π’š=𝟏.πŸ“π’™ 𝟏.πŸ”πŸ– π’š=𝟎.πŸ–πŸπ’™ 𝟎.πŸ‘

2 1. (7.3) What is Natural Base e?

3 1. Answer Euler’s Number:

4 What is a common logarithm?
2. (7.4 d1) What is a common logarithm?

5 A log with a base of 10. Written as log.
2 . Answer A log with a base of 10. Written as log.

6 What is a natural logarithm?
3. (7.4 D1) What is a natural logarithm?

7 A log with a base of e. Written as ln.
3 . Answer A log with a base of e. Written as ln.

8 What is the formula for Compound Interest?
4. M (7.1 D3) What is the formula for Compound Interest?

9 4 . Answer 𝑨=𝑷(𝟏+ 𝒓 𝒏 ) 𝒏𝒕 A = amount after t years P = initial Principal (deposit) r = interest Rate t = time in years n = times per year

10 What is the formula for Continuously Compounded Interest?

11 5 . Answer 𝑨=𝑷𝒆 𝒓𝒕

12 What is the formula for the Product Property?

13 6 . Answer π’π’π’ˆ 𝒃 π’Žπ’= π’π’π’ˆ 𝒃 π’Ž+ π’π’π’ˆ 𝒃 𝒏

14 What is the formula for the Quotient Property?

15 7 . Answer π’π’π’ˆ 𝒃 π’Ž 𝒏 = π’π’π’ˆ 𝒃 π’Ž βˆ’ π’π’π’ˆ 𝒃 𝒏

16 What is the formula for the Power Property?

17 8 . Answer π’π’π’ˆ 𝒃 π’Ž 𝒏 =𝒏 π’π’π’ˆ 𝒃 π’Ž

18 What is the formula for Change of Base?

19 9 . Answer π’π’π’ˆ 𝒄 𝒂= π’π’π’ˆ 𝒃 𝒂 π’π’π’ˆ 𝒃 𝒄

20 What is the Exponential Growth Model?

21 10 . Answer 𝑨=𝑷(𝟏+𝒓) 𝒕

22 What is the Exponential Decay Model?

23 11 . Answer 𝑨=𝑷(πŸβˆ’π’“) 𝒕

24 12. How do you know if an exponential function is a growth or decay function?

25 12 . Answer You look at b in the equation π’š=𝒂𝒃 𝒙 . If 0 <b < 1, it is a decay function. If b > 1, it is a growth function.

26 13. Solve (7.3) You deposit $700 in an account that pays 3.5% annual interest compounded continuously. What is the balance after 2 years?

27 13 . Answer 𝑨=𝑷𝒆 𝒓𝒕 𝑨=πŸ•πŸŽπŸŽπ’† 𝟎.πŸŽπŸ‘πŸ“(𝟐) A = $750.76

28 How do you translate an exponential function when graphing?
14. Solve ( ) How do you translate an exponential function when graphing?

29 π’š=𝒂𝒃 π’™βˆ’π’‰ +π’Œ h = left & right (sign changes) k = up & down
14 . Answer π’š=𝒂𝒃 π’™βˆ’π’‰ +π’Œ h = left & right (sign changes) k = up & down

30 Simplify the expression π’π’π’ˆ πŸ‘ πŸ–πŸ 𝒙 .
19. solve (7.4 D2) Simplify the expression π’π’π’ˆ πŸ‘ πŸ–πŸ 𝒙 .

31 π’π’π’ˆ πŸ‘ πŸ–πŸ 𝒙 π’π’π’ˆ πŸ‘ πŸ‘ πŸ’ 𝒙 π’π’π’ˆ πŸ‘ πŸ‘ cancels out 4x
15 . Answer π’π’π’ˆ πŸ‘ πŸ–πŸ 𝒙 π’π’π’ˆ πŸ‘ πŸ‘ πŸ’ 𝒙 π’π’π’ˆ πŸ‘ πŸ‘ cancels out 4x

32 Rewrite the expression π’π’π’ˆ 𝟐 πŸ‘πŸ=πŸ“.
16. Solve (7.4) Rewrite the expression π’π’π’ˆ 𝟐 πŸ‘πŸ=πŸ“.

33 16 . Answer 𝟐 πŸ“ =πŸ‘πŸ

34 Find the inverse function of π’š=πŸ’ 𝒙 +𝟐.
17. Solve (7.4) Find the inverse function of π’š=πŸ’ 𝒙 +𝟐.

35 17 . Answer π’š=πŸ’ 𝒙 +𝟐 Swap x & y. 𝒙=πŸ’ π’š +𝟐 X – 2 = πŸ’ π’š π’π’π’ˆ πŸ’ 𝒙 βˆ’πŸ = π’π’π’ˆ πŸ’ πŸ’ π’š π’π’π’ˆ πŸ’ πŸ’ cancels out y= π’π’π’ˆ πŸ’ 𝒙 βˆ’πŸ

36 Condense the expression: y = 2log x + 3log y – 5log z
18. Solve (7.5) Condense the expression: y = 2log x + 3log y – 5log z

37 18 . Answer y = 2log x + 3log y – 5log z Power Property: π’š= π’π’π’ˆ 𝒙 𝟐 + π’π’π’ˆ π’š πŸ‘ βˆ’ π’π’π’ˆ 𝒛 πŸ“ Product Property π’š=π’π’π’ˆ 𝒙 𝟐 π’š πŸ‘ βˆ’π’π’π’ˆ 𝒛 πŸ“ Quotient Property π’π’π’ˆ 𝒙 𝟐 π’š πŸ‘ 𝒛 πŸ“

38 Solve the equation: π’π’π’ˆ πŸ“ 𝒙 βˆ’πŸ• = π’π’π’ˆ πŸ“ (πŸπ’™ +πŸ‘)

39 19 . Answer π’π’π’ˆ πŸ“ 𝒙 βˆ’πŸ• = π’π’π’ˆ πŸ“ (πŸπ’™ +πŸ‘) Drop the π’π’π’ˆ πŸ“ x – 7 = 2x + 3 Subtract x from both sides. -7 = x + 3 Subtract 3 from both sides. -10 = x

40 20. Solve (7.6) Solve the equation: πŸ• 𝒙 =πŸ“πŸ”

41 20 . Answer πŸ• 𝒙 =πŸ“πŸ” π’π’π’ˆ πŸ• πŸ• 𝒙 = π’π’π’ˆ πŸ• πŸ“πŸ” π’π’π’ˆ πŸ• πŸ• Cancels out. X = π’π’π’ˆ πŸ• πŸ“πŸ” Change of Base 𝒙= π’π’π’ˆ πŸ“πŸ” π’π’π’ˆ πŸ• X = 2.07

42 21. Solve (7.7) Write an exponential function in the form 𝑦=π‘Žπ‘ π‘₯ that passes through the points (3, 1) and (5, 4).

43 21 . Answer 𝑦=π‘Žπ‘ π‘₯ , (3, 1) and (5, 4). 𝟏= 𝒂𝒃 πŸ‘ 𝐚= 𝟏 𝒃 πŸ‘ πŸ’= 𝒂𝒃 πŸ“ πŸ’= 𝟏 𝒃 πŸ‘ 𝒃 πŸ“ πŸ’= 𝒃 𝟐 2 = b 𝒂= 𝟏 𝟐 πŸ‘ a = 1/8 π’š= 𝟏 πŸ– (𝟐) 𝒙

44 22. Solve (7.7) Write a power function in the form 𝑦=π‘Žπ’™ 𝒃 that passes through the points (2, 3) and (6, 12).

45 22 . Answer 𝑦=π‘Žπ’™ 𝒃 , (2, 3) and (6, 12) πŸ‘=π‘ŽπŸ 𝒃 𝐚= πŸ‘ 𝟐 𝒃 𝟏𝟐=π‘ŽπŸ” 𝒃 𝟏𝟐= πŸ‘ 𝟐 𝒃 ( πŸ” 𝒃 ) 12 = 3( πŸ‘ 𝒃 ) 4 = πŸ‘ 𝒃 π’π’π’ˆ πŸ‘ πŸ’= π’π’π’ˆ πŸ‘ πŸ‘ 𝒃 b = π’π’π’ˆ πŸ’ π’π’π’ˆ πŸ‘ b = 1.26 𝒂= πŸ‘ 𝟐 𝟏.πŸπŸ” = 1.25 y = 1.25 𝒙 𝟏.πŸπŸ”

46 bonus Write an exponential growth function of the form 𝑦=π‘Žπ‘ π‘₯βˆ’β„Ž +π‘˜ whose graph has a y-intercept of 5 and an asymptote of 2.

47 bonus Explain how you can determine if a power function is a good model for a set of data pairs.


Download ppt "Homework "

Similar presentations


Ads by Google