Presentation is loading. Please wait.

Presentation is loading. Please wait.

Mrs. Rivas

Similar presentations


Presentation on theme: "Mrs. Rivas "β€” Presentation transcript:

1 Mrs. Rivas 𝒁𝒀 𝑿𝒀 𝒁𝑿 𝑨π‘ͺ 𝑩π‘ͺ 𝑨𝑩 1. 𝐴𝐡 2. 𝐴𝐢 3. 𝐢𝐡 4. π‘‹π‘Œ 5. 𝑋𝑍 6. π‘π‘Œ
Name the triangle sides that are parallel to the given side. 𝒁𝒀 𝑿𝒀 1. 𝐴𝐡 𝐴𝐢 3. 𝐢𝐡 π‘‹π‘Œ 5. 𝑋𝑍 π‘π‘Œ 𝒁𝑿 𝑨π‘ͺ 𝑩π‘ͺ 𝑨𝑩

2 Mrs. Rivas Points M, N, and P are the midpoints of the sides of βˆ†QRS. QR = 30, RS = 30, and SQ = 18. 7. Find MN 8. Find MQ πŸ— πŸπŸ“ 9. Find MP Find PS πŸπŸ“ πŸ— 11. Find PN Find RN πŸπŸ“ πŸπŸ“

3 Mrs. Rivas Algebra Find the value of x. 13. 𝒙+πŸ—=𝟐(πŸπ’™) 𝒙+πŸ—=πŸ’π’™ πŸ—=πŸ‘π’™ πŸ‘=𝒙

4 Mrs. Rivas 𝟐 πŸπ’™ =πŸπŸŽπ’™βˆ’πŸπŸ πŸ’π’™=πŸπŸŽπ’™βˆ’πŸπŸ βˆ’πŸ”π’™=βˆ’πŸπŸ 𝒙=πŸ‘.πŸ“
Algebra Find the value of x. 14. 𝟐 πŸπ’™ =πŸπŸŽπ’™βˆ’πŸπŸ πŸ’π’™=πŸπŸŽπ’™βˆ’πŸπŸ βˆ’πŸ”π’™=βˆ’πŸπŸ 𝒙=πŸ‘.πŸ“

5 Mrs. Rivas πŸ’π’™+𝟐𝟎=𝟐(πŸ‘π’™) πŸ’π’™+𝟐𝟎=πŸ”π’™ 𝟐𝟎=πŸπ’™ 𝟏𝟎=𝒙
Algebra Find the value of x. 15. πŸ’π’™+𝟐𝟎=𝟐(πŸ‘π’™) πŸ’π’™+𝟐𝟎=πŸ”π’™ 𝟐𝟎=πŸπ’™ 𝟏𝟎=𝒙

6 Mrs. Rivas Use the diagram at the right for Exercises 16 and 17. 16. Which segment is shorter for kayaking across the lake, or ? Explain. 𝑩π‘ͺ is shorter because 𝑩π‘ͺ is half of 5 mi, while 𝑨𝑩 is half of 6 mi.

7 Mrs. Rivas Use the diagram at the right for Exercises 16 and 17. 17. Which distance is shorter, kayaking from 𝐴 to 𝐡 to 𝐢, or walking from 𝐴 to 𝑋 to 𝐢? Explain. Neither; the distance is the same because 𝑩π‘ͺ β‰… 𝑨𝑿 and 𝑨𝑩 β‰… 𝑿π‘ͺ .

8 Mrs. Rivas 𝑳𝑡 is the perpendicular bisector of 𝑴𝑢
Use the figure at the right for Exercises 18–21. 18. What is the relationship between 𝐿𝑁 and 𝑀𝑂 ? 𝑳𝑡 is the perpendicular bisector of 𝑴𝑢

9 Mrs. Rivas Use the figure at the right for Exercises 18–21. 19. What is the value of x? πŸ‘π’™+𝟐𝟎=πŸ“π’™ 𝟐𝟎=πŸπ’™ 𝟏𝟎=𝒙

10 Mrs. Rivas 𝟏𝟎=𝒙 𝑳𝑡 =πŸ‘π’™+𝟐𝟎 𝑳𝑡 =πŸ‘(𝟏𝟎)+𝟐𝟎 𝑳𝑡 =πŸ‘πŸŽ+𝟐𝟎 𝑳𝑡 =πŸ“πŸŽ
Use the figure at the right for Exercises 18–21. 20. Find LM. 𝟏𝟎=𝒙 𝑳𝑡 =πŸ‘π’™+𝟐𝟎 𝑳𝑡 =πŸ‘(𝟏𝟎)+𝟐𝟎 𝑳𝑡 =πŸ‘πŸŽ+𝟐𝟎 𝑳𝑡 =πŸ“πŸŽ

11 Mrs. Rivas 𝟏𝟎=𝒙 𝑳𝑢 =πŸ“π’™ 𝑳𝑢 =πŸ“(𝟏𝟎) 𝑳𝑢 =πŸ“πŸŽ
Use the figure at the right for Exercises 18–21. 21. Find LO. 𝟏𝟎=𝒙 𝑳𝑢 =πŸ“π’™ 𝑳𝑢 =πŸ“(𝟏𝟎) 𝑳𝑢 =πŸ“πŸŽ

12 Mrs. Rivas From A to π‘ͺ𝑫 =πŸπŸ“ From A to π‘ͺ𝑩 =πŸπŸ“
Use the figure at the right for Exercises 22–26. 22. According to the figure, how far is A from 𝐢𝐷 ? From 𝐢𝐡 ? From A to π‘ͺ𝑫 =πŸπŸ“ From A to π‘ͺ𝑩 =πŸπŸ“

13 Mrs. Rivas π‘ͺ𝑨 bisects βˆ π‘«π‘ͺ𝑩; Converse of Angle Bisector. Theorem.
Use the figure at the right for Exercises 22–26. 23. How is 𝐢𝐴 related to DCB? Explain. π‘ͺ𝑨 bisects βˆ π‘«π‘ͺ𝑩; Converse of Angle Bisector. Theorem.

14 Mrs. Rivas Use the figure at the right for Exercises 22–26. 24. Find the value of x. πŸπ’™=πŸ‘π’™βˆ’πŸπŸ— βˆ’π’™=βˆ’πŸπŸ— 𝒙=πŸπŸ—

15 Mrs. Rivas 𝒙=πŸπŸ— π’Žοƒπ‘¨π‘ͺ𝑫 =πŸπ’™ π’Žοƒπ‘¨π‘ͺ𝑫 =𝟐(πŸπŸ—) π’Žοƒπ‘¨π‘ͺ𝑫 =πŸ“πŸ– π’Žοƒπ‘¨π‘ͺ𝑩 =πŸ‘π’™βˆ’πŸπŸ—
Use the figure at the right for Exercises 22–26. 25. Find mACD and mACB. 𝒙=πŸπŸ— π’Žοƒπ‘¨π‘ͺ𝑫 =πŸπ’™ π’Žοƒπ‘¨π‘ͺ𝑫 =𝟐(πŸπŸ—) π’Žοƒπ‘¨π‘ͺ𝑫 =πŸ“πŸ– π’Žοƒπ‘¨π‘ͺ𝑩 =πŸ‘π’™βˆ’πŸπŸ— π’Žοƒπ‘¨π‘ͺ𝑩 =πŸ‘ πŸπŸ— βˆ’πŸπŸ— π’Žοƒπ‘¨π‘ͺ𝑩 =πŸ“πŸ–

16 Mrs. Rivas πŸ“πŸ–+πŸ—πŸŽ+π’Žοƒπ‘«π‘¨π‘ͺ =πŸπŸ–πŸŽ π’Žοƒπ‘«π‘¨π‘ͺ =πŸ‘πŸ πŸ“πŸ–+πŸ—πŸŽ+π’Žοƒπ‘©π‘¨π‘ͺ =πŸπŸ–πŸŽ π’Žοƒπ‘©π‘¨π‘ͺ =πŸ‘πŸ
Use the figure at the right for Exercises 22–26. 26. Find mDAC and mBAC. πŸ“πŸ–+πŸ—πŸŽ+π’Žοƒπ‘«π‘¨π‘ͺ =πŸπŸ–πŸŽ π’Žοƒπ‘«π‘¨π‘ͺ =πŸ‘πŸ πŸ“πŸ–+πŸ—πŸŽ+π’Žοƒπ‘©π‘¨π‘ͺ =πŸπŸ–πŸŽ π’Žοƒπ‘©π‘¨π‘ͺ =πŸ‘πŸ

17 Mrs. Rivas πŸπ’Ž=π’Ž+πŸ• π’Ž=πŸ• 𝑳𝑢 =π’Ž+πŸ• 𝑡𝑢 =πŸπ’Ž 𝑳𝑢 =πŸ•+πŸ• 𝑡𝑢 =𝟐(πŸ•) 𝑳𝑢 =πŸπŸ’ 𝑡𝑢 =πŸπŸ’
Algebra Find the indicated values of the variables and measures. 27. m, LO, NO πŸπ’Ž=π’Ž+πŸ• π’Ž=πŸ• 𝑳𝑢 =π’Ž+πŸ• 𝑡𝑢 =πŸπ’Ž 𝑳𝑢 =πŸ•+πŸ• 𝑡𝑢 =𝟐(πŸ•) 𝑳𝑢 =πŸπŸ’ 𝑡𝑢 =πŸπŸ’

18 Mrs. Rivas πŸ‘π’™=πŸ“π’™βˆ’πŸ‘πŸŽ βˆ’πŸπ’™=βˆ’πŸ‘πŸŽ 𝒙=πŸπŸ“ π’Žοƒπ‘Έπ‘»π‘Ί =πŸ‘π’™+πŸ“π’™βˆ’πŸ‘πŸŽ π’Žοƒπ‘Έπ‘»π‘Ί =πŸ‘(πŸπŸ“)+πŸ“(πŸπŸ“)βˆ’πŸ‘πŸŽ
Algebra Find the indicated values of the variables and measures. 28. π‘₯, π‘šβˆ π‘„π‘‡π‘† πŸ‘π’™=πŸ“π’™βˆ’πŸ‘πŸŽ βˆ’πŸπ’™=βˆ’πŸ‘πŸŽ 𝒙=πŸπŸ“ π’Žοƒπ‘Έπ‘»π‘Ί =πŸ‘π’™+πŸ“π’™βˆ’πŸ‘πŸŽ π’Žοƒπ‘Έπ‘»π‘Ί =πŸ‘(πŸπŸ“)+πŸ“(πŸπŸ“)βˆ’πŸ‘πŸŽ π’Žοƒπ‘Έπ‘»π‘Ί =πŸ’πŸ“+πŸ•πŸ“βˆ’πŸ‘πŸŽ π’Žοƒπ‘Έπ‘»π‘Ί =πŸ—πŸŽ

19 Mrs. Rivas πŸ’π’‘+πŸ‘=πŸ‘π’‘+πŸ” 𝒑+πŸ‘=πŸ” 𝒑=πŸ‘ 𝑰𝑱 =πŸ’π’‘+πŸ‘ 𝑲𝑱 =πŸ‘π’‘+πŸ” 𝑰𝑱 =πŸ’(πŸ‘)+πŸ‘ 𝑲𝑱 =πŸ‘(πŸ‘)+πŸ”
Algebra Find the indicated values of the variables and measures. 29. p, IJ, KJ πŸ’π’‘+πŸ‘=πŸ‘π’‘+πŸ” 𝒑+πŸ‘=πŸ” 𝒑=πŸ‘ 𝑰𝑱 =πŸ’π’‘+πŸ‘ 𝑲𝑱 =πŸ‘π’‘+πŸ” 𝑰𝑱 =πŸ’(πŸ‘)+πŸ‘ 𝑲𝑱 =πŸ‘(πŸ‘)+πŸ” 𝑰𝑱 =𝟏𝟐+πŸ‘ 𝑲𝑱 =πŸ—+πŸ” 𝑰𝑱 =πŸπŸ“ 𝑲𝑱 =πŸπŸ“

20 Mrs. Rivas 30. Writing Determine whether A must be on the bisector of LMN. Explain. a. b. Yes; 𝑨 is equidistant from both rays of the angle, so 𝑨 lies on the bisector. Yes; βˆ π‘³π‘΄π‘¨ β‰… βˆ π‘΅π‘΄π‘¨, so 𝑴𝑨 is a bisector of βˆ π‘³π‘΄π‘΅.


Download ppt "Mrs. Rivas "

Similar presentations


Ads by Google