Presentation is loading. Please wait.

Presentation is loading. Please wait.

ELECTROCHEMICAL SYSTEMS FOR ELECTRIC POWER GENERATION

Similar presentations


Presentation on theme: "ELECTROCHEMICAL SYSTEMS FOR ELECTRIC POWER GENERATION"— Presentation transcript:

1 ELECTROCHEMICAL SYSTEMS FOR ELECTRIC POWER GENERATION
Dzmitry Malevich Depatrment of Chemistry and Biochemistry University of Guelph

2 Electric power conversion in electrochemistry
Electrolysis / Power consumption Electric Power Chemical Reactions Electrochemical battery / Power generation

3 Volta’s battery (1800) Paper moisturized with NaCl solution Cu Zn
Alessandro Volta Paper moisturized with NaCl solution Cu Zn

4 Principles of power generation in the electrochemical systems
Me2n+ - ne- = Me20 CATHODE Me20 - ne- = Me2n+ ANODE Me2 Me1 Salt Bridge Me1n+ SO42- Me2n+ SO42-

5 IMPORTANT NOTICE ! Electrolysis ANODE + CATHODE - Battery ANODE -
System consumes energy G>0 ANODE + CATHODE - Battery System releases energy G<0 ANODE - CATHODE + (oxidation process) (oxidation process) (reduction process) (reduction process)

6 Principles of power generation in the electrochemical systems
Me2n+ - ne- = Me20 CATHODE Me20 - ne- = Me2n+ ANODE Me2 Me1 Diaphragm Membrane or Me1n+ SO42- Me2n+ SO42-

7 Primary batteries Modern Zinc-Manganese battery
Zn-container Carbon rod MnO2 paste (cathode) Gas space Gel electrolyte Leclanché’s battery (1866) Anode: Zn  Zn2+ + 2e- Cathode: 2MnO2 + 2H2O +2e-  2MnOOH + 2OH- Electrolyte: Zn2+ 2NH4Cl +2OH-  Zn(NH3)Cl2 + 2H2O 2MnO2 + Zn + 2NH4Cl  2MnOOH + Zn(NH3)Cl2 Georges Leclanché ( ) Seal Zn-container MnO2 paste (cathode) Carbon rod NH4OH electrolyte

8 Primary batteries Zinc-Manganese alkaline battery
MnO2 paste (cathode) Gel electrolyte Porous Zn (anode) Zinc-Manganese alkaline battery Anode: Zn + 2OH- - 2e-  Zn(OH)2 Cathode: MnO2 + H2O +1e-  MnOOH + OH- aaaaaaaaa MnOOH + H2O +e-  Mn(OH)2 + OH- Zinc-Air battery Anode: Zn + 2OH- - 2e-  Zn(OH)2 Cathode: 1/2 O2 + H2O + 2e-  Zn(OH)2

9 Secondary (rechargeable) batteries
Lead-acid battery Lead paste in Pb-mesh (anode) Lead dioxide paste in Pb-mesh (cathode) Porous separator Safety valve Lead-acid battery Pb PbO2 E=2.06 V 36% H2SO4 discharge charge PbSO4+H2O PbO2+(2H++SO42-)+2H++2e- PbSO4+ 2H+ Pb+(2H++SO42-)-2e- PbSO4 PbO2 + Pb + H2SO PbSO4 + 2H2O discharge

10 Secondary (rechargeable) batteries
Lithium-ion battery Cathode: LiMeO2 - xe Li1-xMeO2 + xLi+ Anode: C + xLi+ + xe CLix CHARGE DISCHARGE Discharge Charge Anode (CLix) Cathode (LiMexOy) LiCoO2 -utilized for commercial batteries LiNiO2, LiMn2O4-prospective Separator Aluminum can Positive terminal Negative terminal

11 Secondary (rechargeable) batteries
Nickel-Metal Hydride battery Cathode: NiOOH + H2O - e Ni(OH)2 + OH- Anode: Me + OH- + e Me + H2O CHARGE DISCHARGE CHARGE DISCHARGE Picture from: T. Takamura / Solid State Ionics (2002)19

12 Types of the electrochemical system for electric power generation
Fuel cells Reaction products (exhaust) Reductant (fuel) Oxidant POWER Primary batteries POWER Secondary batteries Recharge POWER

13 Grove’s fuel cell (1839) O2 H2 4H+ + 4e- 2H2 2H2O - 4e- O2 + 4H+
Sir William Grove 1811–1896 4H+ + 4e- 2H2 2H2O - 4e- O2 + 4H+

14 Fuel Cells performance improving
Raising the voltage: Raising the current: • Increasing the temperature • Increasing the area of eelectrode electrolyte interface • The use of catalyst Cell stack ANODE CATHODE ELECTROLYTE Bipolar electrode ANODE CATHODE ELECTROLYTE Connection of cells in series Anode catalyst Cathode catalyst Electrolyte frame Bipolar plate H2 O2 Stack of several hundred

15 Phosphoric Acid Fuel Cell (PAFC)
Electrolyte in SiC porous matrix O2 Pt-particles catalysts (anode or cathode) Gas (H2 or O2) PACF parameters: current density mA cm-2 single cell voltage mV temperature oC At atmospheric pressure H2

16 Gas Diffusion Electrode
Reaction zone Dry zone (no reaction) H2 Electrode Gas e- e- Electrolyte Reaction zone Dip zone (reaction is slow because diffusion limitation)

17 Disadvantages of liquid electrolyte fuel cell
Low operation temperature ! (reaction is slow, expensive catalysts are needed to produce valuable current) Difficulties in three-phase interface maintaining ! Strong fuel crossover! Recombination (no electron transfer through outer socket - energy loss) H2 O2 Anode Liquid electrolyte Cathode

18 + - Proton Exchange Membrane Fuel Cell (PEMFC) H2 H+ Nafion® membrane
H2O +Air (O2) H+ Nafion® membrane Catalyst support (carbon cloth) Current collector / gas distributor H2 crossover H2 Air (O2) + -

19 Proton Exchange Membrane (PEM)
Polymerization Polyethylene Ethylene C H S F C O Grafting Nafion® (DuPont) - H+ C F Fluorination Polytetrafluoroethylene (PTFE, Teflon®)

20 Fuel reforming CnHm + nH2O = nCO + (m/2 + n)H2 CH4 + H2O = CO + 3H2
CO + H2O = CO2 + H2 CH3OH + H2O = 3 H2 + CO2 T~ 500 oC, Ni-catalyst T~ 250 oC, Ni-catalyst no CO Stainless still Catalyst CH4 + H2O H2 + COx CH4 + O2 CO2 + H2O HEAT

21 + - Direct Methanol Fuel Cell (DMFC) CH3OH + H2O + CO2 H+ Nafion®
H2O +Air (O2) H+ Nafion® membrane Catalyst support (carbon cloth) Current collector / fuel distributor CH3OH crossover CH3OH + H2O Air (O2) + -

22 Methanol oxidation mechanism
+ ê + ê + ê + ê + ê + ê carbon oxygen hydrogen Pt Pt

23 Direct Methanol Fuel Cell (DMFC)
Theoretical voltage = V Real voltage Current Potential vs. HRE, V CH3OH + H2O = CO2 + 6H+ + 6e /2O2 + 6H+ + 6e- = 3H2O

24 Carbon monoxide tolerant anode
oxygen hydrogen Ru Pt

25 Methanol crossover through Nafion
From M.P. Hogharth and G.A. Hards, Platinum Metals Rev. 40 (1996) 150 Temperature oC Current density, A cm Crossover rate, A cm-2 S. R. Narayanan, DOE/ONR Fuel Cell Workshop, Baltimore, MD, Oct Number of methanol moles (Nm) transported by crossover can be calculated by Faraday low: Nm = jc·S·t/n·F, where j - current density(crossover rate) , S - membrane area, t - time, n-number of electrons (n=6 for methanol oxidation), F - Faraday constant

26 Catalysts for fuel cells with polymer electrolyte
PEMFC DMFC Anode: Pt or PtRu (~50% Pt) black 1-10 nm Cathode: Pt (~50% Pt) black 1-10 nm Anode: usually PtRu (~50% Pt) black 1-10 nm Cathode: Pt (~50% Pt) black 1-10 nm Catalysts are supported on carbon nanoparticles ( nm, for example Vulcan XC72) Catalysts are usually unsupported Precious metals load is mg cm-2 for both electrodes Precious metals load is mg cm-2 for both electrodes Power density mW cm -2 at cell voltage 0.5 V (t=80 oC, CO-free hydrogen) Power density mW cm -2 at cell voltage 0.5 V (t=90 oC, CH3OH concentration M) Catalysts cost ~ 0.8 g per kW ( ~140 CAN$ per kW) Catalysts cost ~ 10 g per kW ( ~1750 CAN$ per kW)

27 Molten Carbonate Fuel Cell (MCFC)
Anode Porous electrolyte support Cathode LiNiO2 or LiCoO2 NiCr alloy Alkali metal carbonates in LiAlO2 matrix H2 +CO2 + H2O O2 +CO2 CO32- H2 O2 +CO2 mm mm mm T= oC O2 + 2CO2 + 4e - = 2CO32- 2H2 + 2CO e- = 2H2O + 2CO2

28 Solid Oxide Fuel Cell (SOFC)
Anode Electrolyte Cathode Sr doped La-manganite H2 + H2O O2 O2- H2 O2 YSZ 2H2 + 2O2- - 4e - = 2H2O O2 + 4e - = O2- Ni+YSZ T= oC Electrolyte Anode Air Air Fuel Cathode

29 Types of Fuel Cells Phosphoric Acid Fuel Cell (PAFC)
Mobile ion Operating temperature Power range Phosphoric Acid Fuel Cell (PAFC) H ~220 oC kW H oC kW H oC kW CO ~650 oC MW O oC MW Proton Exchange Membrane Fuel Cell (PEMFC) Direct Methanol Fuel Cell (DMFC) Molten Carbonate Fuel Cell (MCFC) Solid Oxide Fuel Cell (SOFC)


Download ppt "ELECTROCHEMICAL SYSTEMS FOR ELECTRIC POWER GENERATION"

Similar presentations


Ads by Google