Download presentation
Presentation is loading. Please wait.
Published byRosemary Bryant Modified over 9 years ago
1
MOSFET Cross-Section
2
A MOSFET Transistor Gate Source Drain Source Substrate Gate Drain
3
MOSFET Schematic Symbols
4
Formation of the Channel for an Enhancement MOS Transistor
5
Water Analogy of a (subthreshold) MOSFET
6
Channel Current vs. Gate Voltage 00.511.522.533.544.55 0 50 100 150 200 250 300 350 400 450 Gate voltage (V) Channel Current ( A) 0.40.60.811.21.41.61.82 10 -12 10 -11 10 -10 10 -9 10 -8 10 -7 10 -6 10 -5 10 -4 10 -3 Gate voltage (V) Channel Current (A) Above-ThresholdSub-Threshold In linear scale, we have a quadratic dependence In log-scale, we have an exponential dependence VTVT VTVT I th
7
MOS Capacitor Picture
8
MOSFET Channel Picture
9
MOS Capacitor Picture
10
MOS Electrostatics Condition is called flatband --- the voltage when this occurs is called flatband This state is the baseline operating case --- a capacitive divider has one free parameter V fb
11
MOS Electrostatics Depletion Condition --- gate charge is terminated by charged ions in the depletion region Part of this region is often referred to as weak-inversion
12
MOS Electrostatics Inversion --- further gate charge is terminated by carriers at the silicon--silicon-dioxide interface
13
MOS Structure Electrostatics
14
MOS Capacitor Picture
15
MOS-Capacitor Regions Q s = ln( 1 + e ) ( (V g - V T ) - V s )/U T Q s = e ( - V s )/U T Depletion ( (V g - V T ) - V s < 0) Q s = e ( (V g - V T ) - V s )/U T Inversion ( (V g - V T ) - V s > 0) Q s = ( (V g - V T ) - V s )/U T
16
MOS Capacitor Picture
17
MOSFET Channel Picture
18
Calculation of Drain Current
19
No recombination 0 2 2 dx nd DnDn n dn qDJ l nn drainsource n 0 l varies as V G n = Ax + B RG dx nd D dt dn n 2 2 0 00 eeII UVVUVV TdgTSg / / 0
20
MOSFET Current-Voltage Curves 1 /)( 0 //)( 0 / // 0 TSG TdsTSG TD TSTG uV VV uVuV VV uV uVu VV DS eI eeI eeeII Saturation 4 Tds UV eeII uVVuVV TdgTSg // 0 1 / / 0 TSd TSg uVV uVV eeI
21
MOSFET Current-Voltage Curves 1 /)( 0 //)( 0 / // 0 TSG TdSTSG TD TSTG uVKV uVuV uV uVu DS eI eeI eeeII eeII uVVuVV TdgTSg // 0 1 / / 0 TSd TSg uVV uVV eeI
22
Subthreshold MOSFETs In linear scale, we have a quadratic dependence In log-scale, we have an exponential dependence G S D nFET G S D B pFET
23
Determination of Threshold Voltage 0.40.50.60.70.80.91 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 Gate voltage (V) Drain current / subthreshold fit V T = 0.86
24
Drain Current --- Source Voltage
25
Drain Characteristics
26
Origin of Drain Dependencies Increasing Vd effects the drain-to-channel region: increases depletion width increases barrier height
27
Current versus Drain Voltage Not flat due to Early effect (channel length modulation) I d = I d (sat) (1 + (V d /V A ) ) or I d = I d (sat) e Vd/VA R out I d (sat) GND I out
28
Early Voltage Length Dependence Width of depletion region depends on doping, not L Might expect Vo to linearly vary with L
29
MOSFET Operating Regions Band-diagram picture moving from subthreshold to above-threshold Surface potential moving from depletion to inversion
30
Qualitative Above-Threshold I = (K/2 ) ( ( (V g - V T ) - V s ) 2 - ( ( (V g - V T ) - V d ) 2 )
31
Above Threshold MOSFET Equations I = (K/2 ) ( ( (V g - V T ) - V s ) 2 - ( (V g - V T ) - V d ) 2 ) Saturation: Q d = 0 I = (K/2 ) ( ( (V g - V T ) - V s ) 2 If = 1 (ignoring back-gate effects): I = (K/2) ( 2(V gs - V T ) V ds - V ds 2 )
32
Detailed MOSFET Derivation I = Q(x) E(x) Current is constant through the channel (no loss) ( E(x) = Electric Field ) Q(x) = C T ( (V g - V T ) - V(x) ) C T = C D + C ox Q s = C T ( (V g - V T ) - V s ), Q d = C T ( (V g - V T ) - V d ) E(x) = - = (1 / C T ) d V(x) dx d Q(x) dx I = ( / C T ) Q(x) d Q(x) dx ( = C ox / C T )
33
Detailed MOSFET Derivation I = (K/2 ) ( ( (V g - V T ) - V s ) 2 - ( ( (V g - V T ) - V d ) 2 ) Integrate with respect to length: I = ( / C T ) Q(x) d Q(x) dx Q s = C T ( (V g - V T ) - V s ) Q d = C T ( (V g - V T ) - V d ) I L = ( / 2 C T ) Q(x) 2 | I = ( / 2 C T ) ( 1 / L) ( Q s 2 - Q d 2 ) K = C ox (W/L) I = ( C T / 2 ) ( 1 / L) ( ( (V g - V T ) - V s ) 2 - ( (V g - V T ) - V d ) 2 )
34
MOSFET Equations I = (K/2) ( (V g - V T - V s ) 2 - (V g - V T - V d ) 2 ) Saturation: (Q d = 0) I = (K/2) (V gs - V T ) 2 When ignoring back-gate effects (we often do): = 1 I = (K/2) ( 2(V gs - V T ) V ds - V ds 2 ) Above-Threshold: Subthreshold: I = I s e (1 – e ) V gs /U T -V ds /U T Saturation: ( V ds > 4 U T ) I = I s e V gs /U T (V d > V g - V T )
35
Output Characteristics of the Above-Threshold MOSFET Interpretation of large-signal model
36
MOSFETs G S D nFET G S D B pFET 00.511.522.533.544.55 0 50 100 150 200 250 300 350 Gate voltage (V) Current ( A) K = 37.861 A/V 2 V T = 0.806
37
Drain Current - Gate Voltage
38
Drain Current --- Source Voltage 00.10.20.30.40.50.60.70.80.91 0 0.5 1 1.5 2 2.5 3 3.5 4 Gate voltage (V) sqrt(Drain current ( A)) (V g - V T ) = 0.595 K/ = 74.585 A/V 2 ( = 0.54) ( = 0.7)
39
An Ohmic MOSFET I = (K/2 ) ( ( (V g - V T ) - V s ) 2 - ( (V g - V T ) - V d ) 2 ) If V d ~ V s, (small difference) (V d - V s = 50mV) I = K (V g - V T )(V d - V s )
40
A MOSFET in Saturation Saturation: Q d = 0 I = (K/2 ) ( ( (V g - V T ) - V s ) 2 V s = 0 I = (K /2) (V g - V T ) 2
41
More Ohmic Region Data I = (K/2 ) ( ( (V g - V T ) - V s ) 2 - ( (V g - V T ) - V d ) 2 ) Take the derivative of I with respect to V d (V s = 0 ) dI / d V d = (K/2 )( 0 - (-2) ( (V g - V T ) - V d ) ) = (K/2 )( (V g - V T ) - V d )
42
Influence of V DS on the Output Characteristics
43
Current versus Drain Voltage Not flat due to Early effect (channel length modulation) I d = I d (sat) (1 + (V d /V A ) ) or I d = I d (sat) e Vd/VA R out I d (sat) GND I out
44
Early Voltage Length Dependence Width of depletion region depends on doping, not L Might expect Vo to linearly vary with L
45
Small-Signal Modeling gmVgmVroro V3V3 V2V2 V2V2 V1V1 +V-+V- V3V3 V2V2 V1V1 V3V3 V2V2 V1V1 gmgm roro Above VT MOSFET Sub VT MOSFET AvAv I I I / U T 2I / ( V 1 -V 2 -V T )V A / I V A / U T 2V A / ( V 1 -V 2 -V T )
46
Small-Signal Modeling gmVgmVroro V3V3 V2V2 V2V2 rr V1V1 +V-+V- V3V3 V2V2 V1V1 V3V3 V2V2 V1V1 gmgm roro rr BJT Above VT MOSFET Sub VT MOSFET AvAv (U T ) / I I I I / U T 2I / ( V 1 -V 2 -V T ) V A / I V A / U T 2V A / ( V 1 -V 2 -V T )
47
Capacitances in a MOSFET
48
MOSFET Depletion Capacitors
49
Overlap Capacitances
50
Capacitance Modeling
52
Velocity Saturation Ideal Drift (Ohm’s Law) Si Crystal Velocity Limit
53
Effect of Velocity Saturation L = 76 nm MOSFET VTVT Square-law region
55
Small-Signal Modeling (with kappa) gmVgmVroro V3V3 V2V2 V2V2 V1V1 +V-+V- V3V3 V2V2 V1V1 V3V3 V2V2 V1V1 gmgm roro Above VT MOSFET Sub VT MOSFET AvAv I I I / U T 2I / ( V 1 -V 2 -V T )V A / I V A / U T 2V A / ( V 1 -V 2 -V T )
56
Small-Signal Modeling (with kappa) gmVgmVroro V3V3 V2V2 V2V2 rr V1V1 +V-+V- V3V3 V2V2 V1V1 V3V3 V2V2 V1V1 gmgm roro rr BJT Above VT MOSFET Sub VT MOSFET AvAv (U T ) / I I I I / U T I / U T 2I / ( V 1 -V 2 -V T ) V A / I V A / U T V A / U T 2V A / ( V 1 -V 2 -V T )
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.