Download presentation
Presentation is loading. Please wait.
Published byJudith Marsh Modified over 9 years ago
1
The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions HARVARD Talk online: sachdev.physics.harvard.edu
2
Max Metlitski, Harvard Frederik Denef, Harvard Lars Fritz, Cologne Victor Galitski, Maryland Sean Hartnoll, Harvard Christopher Herzog, Princeton Pavel Kovtun, Victoria Markus Muller, Trieste Jorg Schmalian, Iowa Dam Son, Washington Frederik Denef, Harvard Lars Fritz, Cologne Victor Galitski, Maryland Sean Hartnoll, Harvard Christopher Herzog, Princeton Pavel Kovtun, Victoria Markus Muller, Trieste Jorg Schmalian, Iowa Dam Son, Washington HARVARD Eun Gook Moon, Harvard
3
1. Graphene `Topological’ Fermi surface transition 2. The cuprate superconductors Fluctuating spin density waves, and pairing by gauge fluctuations Outline
4
1. Graphene `Topological’ Fermi surface transition 2. The cuprate superconductors Fluctuating spin density waves, and pairing by gauge fluctuations Outline
5
Graphene
6
Conical Dirac dispersion
7
Quantum phase transition in graphene tuned by a gate voltage Electron Fermi surface
8
Hole Fermi surface Electron Fermi surface Quantum phase transition in graphene tuned by a gate voltage
9
Electron Fermi surface Hole Fermi surface There must be an intermediate quantum critical point where the Fermi surfaces reduce to a Dirac point Quantum phase transition in graphene tuned by a gate voltage
10
Quantum critical graphene
11
Quantum critical Quantum phase transition in graphene
12
Quantum critical transport S. Sachdev, Quantum Phase Transitions, Cambridge (1999).
13
Quantum critical transport K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).
14
Quantum critical transport P. Kovtun, D. T. Son, and A. Starinets, Phys. Rev. Lett. 94, 11601 (2005), 8714 (1997).
15
Quantum critical transport in graphene L. Fritz, J. Schmalian, M. Müller and S. Sachdev, Physical Review B 78, 085416 (2008) M. Müller, J. Schmalian, and L. Fritz, Physical Review Letters 103, 025301 (2009)
16
S.A. Hartnoll, P.K. Kovtun, M. Müller, and S. Sachdev, Phys. Rev. B 76 144502 (2007) Quantum critical
17
S.A. Hartnoll, P.K. Kovtun, M. Müller, and S. Sachdev, Phys. Rev. B 76 144502 (2007) Quantum critical
18
Magnetohydrodynamics of quantum criticality S.A. Hartnoll, P.K. Kovtun, M. Müller, and S. Sachdev, Phys. Rev. B 76 144502 (2007)
19
Magnetohydrodynamics of quantum criticality S.A. Hartnoll, P.K. Kovtun, M. Müller, and S. Sachdev, Phys. Rev. B 76 144502 (2007)
20
Magnetohydrodynamics of quantum criticality
23
1. Graphene `Topological’ Fermi surface transition 2. The cuprate superconductors Fluctuating spin density waves, and pairing by gauge fluctuations Outline
24
1. Graphene `Topological’ Fermi surface transition 2. The cuprate superconductors Fluctuating spin density waves, and pairing by gauge fluctuations Outline
25
The cuprate superconductors
26
Central ingredients in cuprate phase diagram: antiferromagnetism, superconductivity, and change in Fermi surface Strange Metal
27
Fermi surface+antiferromagnetism Hole states occupied Electron states occupied +
28
Fermi surfaces in electron- and hole-doped cuprates Hole states occupied Electron states occupied
29
Spin density wave theory
30
S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997). Hole pockets Electron pockets Hole-doped cuprates
31
S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997). Hole pockets Electron pockets Hole-doped cuprates
32
S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997). Hole pockets Electron pockets Hole-doped cuprates Hot spots
33
S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997). Hole pockets Electron pockets Hole-doped cuprates Fermi surface breaks up at hot spots into electron and hole “pockets” Hole pockets Hot spots
34
S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997). Hole pockets Electron pockets Hole-doped cuprates Fermi surface breaks up at hot spots into electron and hole “pockets” Hot spots
35
arXiv:0912.3022 Fermi liquid behaviour in an underdoped high Tc superconductor Suchitra E. Sebastian, N. Harrison, M. M. Altarawneh, Ruixing Liang, D. A. Bonn, W. N. Hardy, and G. G. Lonzarich Evidence for small Fermi pockets
37
Spin density wave theory in hole-doped cuprates
38
Fermi pockets in hole-doped cuprates
39
Charge carriers in the lightly-doped cuprates with Neel order Electron pockets Hole pockets
46
Theory of underdoped cuprates
47
Higgs Coulomb
48
Higgs Coulomb
51
Complete theory
57
R. K. Kaul, M. Metlitksi, S. Sachdev, and Cenke Xu, Phys. Rev. B 78, 045110 (2008).
58
T=0 Phase diagram Higgs Coulomb
59
T=0 Phase diagram d-wave superconductivity
60
T=0 Phase diagram d-wave superconductivity Competition between antiferromagnetism and superconductivity shrinks region of antiferromagnetic order: feedback of “probe fermions” on CFT is important
61
Theory of quantum criticality in the cuprates T*T*
62
T*T*
63
T*T*
64
G. Knebel, D. Aoki, and J. Flouquet, arXiv:0911.5223 Similar phase diagram for CeRhIn 5
65
T*T*
66
T*T*
67
Similar phase diagram for the pnictides Ishida, Nakai, and Hosono arXiv:0906.2045v1 S. Nandi, M. G. Kim, A. Kreyssig, R. M. Fernandes, D. K. Pratt, A. Thaler, N. Ni, S. L. Bud'ko, P. C. Canfield, J. Schmalian, R. J. McQueeney, A. I. Goldman, arXiv:0911.3136.
68
T*T*
70
S. A. Kivelson, E. Fradkin, and V. J. Emery, Nature 393, 550 (1998). R. K. Kaul, M. Metlitksi, S. Sachdev, and Cenke Xu, Phys. Rev. B 78, 045110 (2008).
71
S. A. Kivelson, E. Fradkin, and V. J. Emery, Nature 393, 550 (1998). R. K. Kaul, M. Metlitksi, S. Sachdev, and Cenke Xu, Phys. Rev. B 78, 045110 (2008).
72
T*T*
73
R. K. Kaul, M. Metlitksi, S. Sachdev, and Cenke Xu, Physical Review B 78, 045110 (2008). Onset of superconductivity disrupts SDW order, but VBS/CDW/ Ising-nematic ordering can survive VBS/CDW and/or Ising-nematic order T I-n
74
General theory of finite temperature dynamics and transport near quantum critical points, with applications to antiferromagnets, graphene, and superconductors Conclusions
75
The AdS/CFT offers promise in providing a new understanding of strongly interacting quantum matter at non-zero density Conclusions
76
Gauge theory for pairing of Fermi pockets in a metal with fluctuating spin density wave order: Many qualitative similarities to holographic strange metals and superconductors
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.