Presentation is loading. Please wait.

Presentation is loading. Please wait.

The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions HARVARD Talk online: sachdev.physics.harvard.edu.

Similar presentations


Presentation on theme: "The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions HARVARD Talk online: sachdev.physics.harvard.edu."— Presentation transcript:

1 The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions HARVARD Talk online: sachdev.physics.harvard.edu

2 Max Metlitski, Harvard Frederik Denef, Harvard Lars Fritz, Cologne Victor Galitski, Maryland Sean Hartnoll, Harvard Christopher Herzog, Princeton Pavel Kovtun, Victoria Markus Muller, Trieste Jorg Schmalian, Iowa Dam Son, Washington Frederik Denef, Harvard Lars Fritz, Cologne Victor Galitski, Maryland Sean Hartnoll, Harvard Christopher Herzog, Princeton Pavel Kovtun, Victoria Markus Muller, Trieste Jorg Schmalian, Iowa Dam Son, Washington HARVARD Eun Gook Moon, Harvard

3 1. Graphene `Topological’ Fermi surface transition 2. The cuprate superconductors Fluctuating spin density waves, and pairing by gauge fluctuations Outline

4 1. Graphene `Topological’ Fermi surface transition 2. The cuprate superconductors Fluctuating spin density waves, and pairing by gauge fluctuations Outline

5 Graphene

6 Conical Dirac dispersion

7 Quantum phase transition in graphene tuned by a gate voltage Electron Fermi surface

8 Hole Fermi surface Electron Fermi surface Quantum phase transition in graphene tuned by a gate voltage

9 Electron Fermi surface Hole Fermi surface There must be an intermediate quantum critical point where the Fermi surfaces reduce to a Dirac point Quantum phase transition in graphene tuned by a gate voltage

10 Quantum critical graphene

11 Quantum critical Quantum phase transition in graphene

12 Quantum critical transport S. Sachdev, Quantum Phase Transitions, Cambridge (1999).

13 Quantum critical transport K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).

14 Quantum critical transport P. Kovtun, D. T. Son, and A. Starinets, Phys. Rev. Lett. 94, 11601 (2005), 8714 (1997).

15 Quantum critical transport in graphene L. Fritz, J. Schmalian, M. Müller and S. Sachdev, Physical Review B 78, 085416 (2008) M. Müller, J. Schmalian, and L. Fritz, Physical Review Letters 103, 025301 (2009)

16 S.A. Hartnoll, P.K. Kovtun, M. Müller, and S. Sachdev, Phys. Rev. B 76 144502 (2007) Quantum critical

17 S.A. Hartnoll, P.K. Kovtun, M. Müller, and S. Sachdev, Phys. Rev. B 76 144502 (2007) Quantum critical

18 Magnetohydrodynamics of quantum criticality S.A. Hartnoll, P.K. Kovtun, M. Müller, and S. Sachdev, Phys. Rev. B 76 144502 (2007)

19 Magnetohydrodynamics of quantum criticality S.A. Hartnoll, P.K. Kovtun, M. Müller, and S. Sachdev, Phys. Rev. B 76 144502 (2007)

20 Magnetohydrodynamics of quantum criticality

21

22

23 1. Graphene `Topological’ Fermi surface transition 2. The cuprate superconductors Fluctuating spin density waves, and pairing by gauge fluctuations Outline

24 1. Graphene `Topological’ Fermi surface transition 2. The cuprate superconductors Fluctuating spin density waves, and pairing by gauge fluctuations Outline

25 The cuprate superconductors

26 Central ingredients in cuprate phase diagram: antiferromagnetism, superconductivity, and change in Fermi surface Strange Metal

27 Fermi surface+antiferromagnetism Hole states occupied Electron states occupied +

28 Fermi surfaces in electron- and hole-doped cuprates Hole states occupied Electron states occupied

29 Spin density wave theory

30 S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997). Hole pockets Electron pockets Hole-doped cuprates

31 S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997). Hole pockets Electron pockets Hole-doped cuprates

32 S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997). Hole pockets Electron pockets Hole-doped cuprates Hot spots

33 S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997). Hole pockets Electron pockets Hole-doped cuprates Fermi surface breaks up at hot spots into electron and hole “pockets” Hole pockets Hot spots

34 S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997). Hole pockets Electron pockets Hole-doped cuprates Fermi surface breaks up at hot spots into electron and hole “pockets” Hot spots

35 arXiv:0912.3022 Fermi liquid behaviour in an underdoped high Tc superconductor Suchitra E. Sebastian, N. Harrison, M. M. Altarawneh, Ruixing Liang, D. A. Bonn, W. N. Hardy, and G. G. Lonzarich Evidence for small Fermi pockets

36

37 Spin density wave theory in hole-doped cuprates

38 Fermi pockets in hole-doped cuprates

39 Charge carriers in the lightly-doped cuprates with Neel order Electron pockets Hole pockets

40

41

42

43

44

45

46 Theory of underdoped cuprates

47 Higgs Coulomb

48 Higgs Coulomb

49

50

51 Complete theory

52

53

54

55

56

57 R. K. Kaul, M. Metlitksi, S. Sachdev, and Cenke Xu, Phys. Rev. B 78, 045110 (2008).

58 T=0 Phase diagram Higgs Coulomb

59 T=0 Phase diagram d-wave superconductivity

60 T=0 Phase diagram d-wave superconductivity Competition between antiferromagnetism and superconductivity shrinks region of antiferromagnetic order: feedback of “probe fermions” on CFT is important

61 Theory of quantum criticality in the cuprates T*T*

62 T*T*

63 T*T*

64 G. Knebel, D. Aoki, and J. Flouquet, arXiv:0911.5223 Similar phase diagram for CeRhIn 5

65 T*T*

66 T*T*

67 Similar phase diagram for the pnictides Ishida, Nakai, and Hosono arXiv:0906.2045v1 S. Nandi, M. G. Kim, A. Kreyssig, R. M. Fernandes, D. K. Pratt, A. Thaler, N. Ni, S. L. Bud'ko, P. C. Canfield, J. Schmalian, R. J. McQueeney, A. I. Goldman, arXiv:0911.3136.

68 T*T*

69

70 S. A. Kivelson, E. Fradkin, and V. J. Emery, Nature 393, 550 (1998). R. K. Kaul, M. Metlitksi, S. Sachdev, and Cenke Xu, Phys. Rev. B 78, 045110 (2008).

71 S. A. Kivelson, E. Fradkin, and V. J. Emery, Nature 393, 550 (1998). R. K. Kaul, M. Metlitksi, S. Sachdev, and Cenke Xu, Phys. Rev. B 78, 045110 (2008).

72 T*T*

73 R. K. Kaul, M. Metlitksi, S. Sachdev, and Cenke Xu, Physical Review B 78, 045110 (2008). Onset of superconductivity disrupts SDW order, but VBS/CDW/ Ising-nematic ordering can survive VBS/CDW and/or Ising-nematic order T I-n

74 General theory of finite temperature dynamics and transport near quantum critical points, with applications to antiferromagnets, graphene, and superconductors Conclusions

75 The AdS/CFT offers promise in providing a new understanding of strongly interacting quantum matter at non-zero density Conclusions

76 Gauge theory for pairing of Fermi pockets in a metal with fluctuating spin density wave order: Many qualitative similarities to holographic strange metals and superconductors


Download ppt "The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions HARVARD Talk online: sachdev.physics.harvard.edu."

Similar presentations


Ads by Google