Download presentation
1
Squares and square roots
Objective: Find squares of numbers and square roots of perfect squares.
2
A square has all sides the same length.
So to find the area of a square, you need to multiply the length × width. The Area of the square at the right is 5 × 5 which equals 25 square units. The square of a number is the product of a number and itself. So, the square of 5 is 25. We can also say five squared or write it: 52= 5 × 5= 25 Examples: 1) Find the square of 3. 2) Find the square of 12.
3
Perfect squares: Numbers like 9, 16, and 25 are called square numbers or perfect squares because they are squares of whole numbers. For Example: 9 = 3 ● 3 16 = 4 ● 4 25 = 5 ● 5
4
Square roots: The factors multiplied to form a perfect square are called square roots. A radical sign √ is the symbol used to indicate a square root of a number. A square root of a number is one of its two equal factors. For example: 4 ● 4 = 16, so the √16 = 4 Examples: Find √81 = 9 ( because 9 × 9 = 81) Find √225 =
5
To do this activity you will have to write a sub-title: SQUARE ROOTS
Complete the activity by finding the square roots of 4, 9, 16, 25, 36, 49, 64, 81, 100. To do this activity you will have to write a sub-title: SQUARE ROOTS Draw the square rood sign (radical sign) in a different color. Color the necessary squares to make the square root correct. 3. Then write the square root and the answer in another color.
6
Homework: 4 1 7 11 16 20 18 34 Find the square of each number. 9. √4
Find each square root. 9. √4 10. √16 11. √49 12. √100 13. √144 14. √256 15. √529 16. √625
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.