Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chapter 5 Data representation.

Similar presentations


Presentation on theme: "Chapter 5 Data representation."— Presentation transcript:

1 Chapter 5 Data representation

2 Aim Explain how integers are represented in computers using:
Unsigned, signed magnitude, excess, and two’s complement notations Explain how fractional numbers are represented in computers Floating point notation (IEEE 754 single format) Calculate the decimal value represented by a binary sequence in: Unsigned, signed notation, excess, two’s complement, and the IEEE 754 notations. Explain how characters are represented in computers E.g. using ASCII and Unicode Explain how colours, images, sound and movies are represented

3 Integer Representations
Unsigned notation Signed magnitude notion Excess notation Two’s complement notation.

4 Unsigned Representation
Represents positive integers. Unsigned representation of 157: Addition is simple: = position 7 6 5 4 3 2 1 Bit pattern contribution 27 24 23 22 20

5 Advantages and disadvantages of unsigned notation
One representation of zero Simple addition Disadvantages Negative numbers can not be represented. The need of different notation to represent negative numbers.

6 Signed Magnitude Representation
In signed magnitude the left most bit represents the sign of the integer. 0 for positive numbers. 1 for negative numbers. The remaining bits represent to magnitude of the numbers.

7 Example - Suppose 10011101 is a signed magnitude representation.
The sign bit is 1, then the number represented is negative The magnitude is with a value = 29 Then the number represented by is –29. position 7 6 5 4 3 2 1 Bit pattern contribution - 24 23 22 20

8 Exercise 1 3710 has in signed magnitude notation. Find the signed magnitude of –3710 ? Using the signed magnitude notation find the 8-bit binary representation of the decimal value 2410 and Find the signed magnitude of –63 using 8-bit binary sequence?

9 Signed-Summary In signed magnitude notation, Advantages:
the most significant bit is used to represent the sign. 1 represents negative numbers 0 represents positive numbers. The unsigned value of the remaining bits represent The magnitude. Advantages: Represents positive and negative numbers Disadvantages: two representations of zero, difficult operation.

10 Excess Notation In excess notation:
the value represented is the unsigned value with a fixed value subtracted from it. For n-bit binary sequences the value subtracted fixed value is 2(n-1). Most significant bit: 0 for negative numbers 1 for positive numbers

11 Excess Notation with n bits
1000…0 represent 2n-1 is the decimal value in unsigned notation. Therefore, in excess notation: 1000…0 will represent 0 . Decimal value In unsigned notation Decimal value In excess notation - 2n-1 =

12 Example (1) - excess to decimal
Find the decimal number represented by in excess notation. Unsigned value = = = 15310 Excess value: excess value = 153 – 27 = 152 – 128 = 25.

13 Example (2) - decimal to excess
Represent the decimal value 24 in 8-bit excess notation. We first add, 28-1, the fixed value = = 152 then, find the unsigned value of 152 15210 = (unsigned notation). = (excess notation)

14 example (3) Represent the decimal value -24 in 8-bit excess notation.
We first add, 28-1, the fixed value = = 104 then, find the unsigned value of 104 10410 = (unsigned notation). -2410 = (excess notation)

15 Example (4) -- 10101 Unsigned Sign Magnitude Excess notation
= = 2110 The value represented in unsigned notation is 21 Sign Magnitude The sign bit is 1, so the sign is negative The magnitude is the unsigned value = 510 So the value represented in signed magnitude is -510 Excess notation As an unsigned binary integer = 2110 subtracting = 16, we get = 510. So the value represented in excess notation is 510.

16 Excess notation - Summary
In excess notation, the value represented is the unsigned value with a fixed value subtracted from it. i.e. for n-bit binary sequences the value subtracted is 2(n-1). Most significant bit: 0 for negative numbers . 1 positive numbers. Advantages: Only one representation of zero. Easy for comparison.

17 Two’s Complement Notation
The most used representation for integers. All positive numbers begin with 0. All negative numbers begin with 1. One representation of zero i.e. 0 is represented as 0000 using 4-bit binary sequence.

18 Properties of Two’s Complement Notation
Positive numbers begin with 0 Negative numbers begin with 1 Only one representation of 0, i.e. 0000 Relationship between +n and –n.

19 Two’s complement-summary
In two’s complement the most significant for an n-bit number has a contribution of –2(n-1). One representation of zero All arithmetic operations can be performed by using addition and inversion. The most significant bit: 0 for positive and 1 for negative. Three methods can the decimal value of a negative number: Method 1 decimal value of (n-1) bits, then subtract 2n-1 Method 2 - 2n-1 is the contribution of the sign bit. Method 3 Binary rep. of the corresponding positive number. Let V be its decimal value. - V is the required value.

20 Exercise Determine the decimal value represented by in each of the following four systems. Unsigned notation? Signed magnitude notation? Excess notation? Tow’s complements?

21 Fraction Representation
Floating point representation.

22 Floating Point Representation format
The exponent is biased by a fixed value b, called the bias. The mantissa should be normalised, e.g. if the real mantissa if of the form 1.f then the normalised mantissa should be f, where f is a binary sequence. Sign Exponent Mantissa

23 Representation in IEEE 754 single precision
sign bit: 0 for positive and, 1 for negative numbers 8 biased exponent by 127 23 bit normalised mantissa Sign Exponent Mantissa

24 Example (1) 5.7510 in IEEE single precision
5.75 is a positive number then the sign bit is 0. 5.75 = * 20 = * 21 = * 22 The real mantissa is , then the normalised mantissa is The real exponent is 2 and the bias is 127, then the exponent is =12910 = The representation of 5.75 in IEE sing-precision is:

25 Example (2) which number does the following IEEE single precision notation represent? The sign bit is 1, hence it is a negative number. The exponent is = 12810 It is biased by 127, hence the real exponent is 128 –127 = 1. The mantissa: It is normalised, hence the true mantissa is 1.01 = Finally, the number represented is: x 21 = -2.50 1

26 Single Precision Format
The exponent is formatted using excess-127 notation, with an implied base of 2 Example: Exponent: Representation: 135 – 127 = 8 The stored values 0 and 255 of the exponent are used to indicate special values, the exponential range is restricted to to 2127 The number 0.0 is defined by a mantissa of 0 together with the special exponential value 0 The standard allows also values +/-∞ (represented as mantissa +/-0 and exponent 255 Allows various other special conditions

27 In comparison The smallest and largest possible 32-bit integers in two’s complement are only -232 and 2017/4/20 PITT CS 1621 27 27

28 Normalized (positive range; negative is symmetric)
Range of numbers Normalized (positive range; negative is symmetric) smallest +2-126× (1+0) = 2-126 largest +2127× (2-2-23) 2127(2-2-23) 2-126 Positive overflow Positive underflow 2017/4/20 PITT CS 1621 28 28

29 Representation in IEEE 754 double precision format
It uses 64 bits 1 bit sign 11 bit exponent biased by 1023. 52 bit mantissa Sign Exponent Mantissa

30 Character representation- ASCII
ASCII (American Standard Code for Information Interchange) It is the scheme used to represent characters. Each character is represented using 7-bit binary code. If 8-bits are used, the first bit is always set to 0 See (table 5.1 p56, study guide) for character representation in ASCII.

31 ASCII – example Symbol decimal Binary 7 55 00110111 8 56 00111000
: ; < = > ? @ A B C

32 Character strings How to represent character strings?
A collection of adjacent “words” (bit-string units) can store a sequence of letters Notation: enclose strings in double quotes "Hello world" Representation convention: null character defines end of string Null is sometimes written as '\0' Its binary representation is the number 0 'H' 'e' 'l' 'l' o' ' ' 'W' 'o' 'r' 'l' 'd' '\0'

33 Layered View of Representation
Text string Information Data Sequence of characters Information Data Character Bit string

34 Unicode - representation
ASCII code can represent only 128 = 27 characters. It only represents the English Alphabet plus some control characters. Unicode is designed to represent the worldwide interchange. It uses 16 bits and can represents 32,768 characters. For compatibility, the first 128 Unicode are the same as the one of the ASCII.

35 Colour representation
Colours can represented using a sequence of bits. 256 colours – how many bits? Hint for calculating To figure out how many bits are needed to represent a range of values, figure out the smallest power of 2 that is equal to or bigger than the size of the range. That is, find x for 2 x => 256 24-bit colour – how many possible colors can be represented? Hints 16 million possible colours (why 16 millions?)

36 24-bits -- the True colour
24-bit color is often referred to as the true colour. Any real-life shade, detected by the naked eye, will be among the 16 million possible colours.

37 Example: 2-bit per pixel
= (white) 1 (dark grey) (light grey) (black) 4=22 choices 00 (off, off)=white 01 (off, on)=light grey 10 (on, off)=dark grey 11 (on, on)=black

38 Image representation An image can be divided into many tiny squares, called pixels. Each pixel has a particular colour. The quality of the picture depends on two factors: the density of pixels. The length of the word representing colours. The resolution of an image is the density of pixels. The higher the resolution the more information information the image contains.

39 Representing Sound Graphically
X axis: time Y axis: pressure A: amplitude (volume) : wavelength (inverse of frequency = 1/)

40 Sampling Sampling is a method used to digitise sound waves.
A sample is the measurement of the amplitude at a point in time. The quality of the sound depends on: The sampling rate, the faster the better The size of the word used to represent a sample.

41 Digitizing Sound Capture amplitude at these points
Lose all variation between data points Zoomed Low Frequency Signal

42 Summary Integer representation Fraction representation
Unsigned, Signed, Excess notation, and Two’s complement. Fraction representation Floating point (IEEE 754 format ) Single and double precision Character representation Colour representation Sound representation


Download ppt "Chapter 5 Data representation."

Similar presentations


Ads by Google