Download presentation
Presentation is loading. Please wait.
Published byCharleen Clarke Modified over 9 years ago
1
6 6.1 - One Sample M ean μ, Variance σ 2, Proportion π 6 6.2 - Two Samples M eans, Variances, Proportions μ1 vs. μ2 σ12 vs. σ22 π1 vs. π2 6 6.3 - Multiple Samples M eans, Variances, Proportions μ1, …, μk σ12, …, σk2 π1, …, πk CHAPTER 6 Statistical Inference & Hypothesis Testing CHAPTER 6 Statistical Inference & Hypothesis Testing
2
RANDOM SAMPLE size n POPULATION X = random variable, numerical (discrete or continuous) X ~ Dist ( , ) = mean 2 = variance Parameters Statistics Parameter Estimation variance mean Sampling Distributions
3
Sampling Distribution POPULATION Success Failure RANDOM SAMPLE size n Discrete random variable X = # Successes in sequence of n Bernoulli trials (0, …, n) For any randomly selected individual, first define a binary random variable: ParameterParameter Sampling Distribution Parameter Estimate = ? Parameter
4
POPULATION Success Failure For any randomly selected individual, first define a binary random variable: ParameterParameter Sampling Distribution Parameter Estimate = ? Parameter Discrete random variable X = # Successes in sequence of n Bernoulli trials (0, …, n) If n 15 and n (1 – ) 15, then via the Normal Approximation to the Binomial… If n 15 and n (1 – ) 15, then via the Normal Approximation to the Binomial… RANDOM SAMPLE size n Sampling Distribution
5
POPULATION Success Failure For any randomly selected individual, first define a binary random variable: ParameterParameter Sampling Distribution Parameter Estimate = ? Parameter Discrete random variable X = # Successes in sequence of n Bernoulli trials (0, …, n) If n 15 and n (1 – ) 15, then via the Normal Approximation to the Binomial… If n 15 and n (1 – ) 15, then via the Normal Approximation to the Binomial… RANDOM SAMPLE size n s.e. does not depend on s.e. DOES depend on
6
Sampling Distribution Example Null Distribution
7
Example Null Distribution
8
ExampleNull Hypothesis Alternative Hypothesis
9
ExampleNull Hypothesis Alternative Hypothesis 95% Margin of Error 95% Confidence Interval (for ) =.04.16 null value does not contain null value = 0.2 Reject at =.05 Statistical significance < 0.2 Statistical significance at =.05… Evidence that < 0.2, based on study. point estimate of true
10
ExampleNull Hypothesis Alternative Hypothesis 95% Margin of Error 95% Acceptance Region (for H 0 ) = null value does not contain null value = 0.2 Reject at =.05 Statistical significance < 0.2 Statistical significance at =.05… Evidence that < 0.2, based on study. point estimate of true ExampleNull Hypothesis Alternative Hypothesis.04.16
11
null value does not contain null value = 0.2 Reject at =.05 point estimate does not contain point estimate = 0.1 Reject at =.05 ExampleNull Hypothesis Alternative Hypothesis 95% Margin of Error point estimate of true ExampleNull Hypothesis Alternative Hypothesis.12.28 Statistical significance < 0.2 Statistical significance at =.05… Evidence that < 0.2, based on study. 95% Acceptance Region (for H 0 ) =
12
ExampleNull Hypothesis Alternative Hypothesis point estimate of true ExampleNull Hypothesis Alternative Hypothesis.12.28 p-value = Reject at =.05, etc.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.