Download presentation
1
Modern Chemistry Chapter 6 Chemical Bonding
Sections 1-5 Introduction to Chemical Bonding Covalent Bonding & Molecular Compounds Ionic Bonding & Ionic Compounds Metallic Bonding Molecular Geometry Chapter 6 Section 5 Molecular Geometry pages
2
Chapter 6 Section 5 Molecular Geometry pages 197-207
VSEPR theory Hybridization Hybrid orbitals Dipole Hydrogen bonding London dispersion forces Chapter Vocabulary Chapter 6 Section 5 Molecular Geometry pages
3
Chapter 6 Section 5 Molecular Geometry pages 197-207
4
Chapter 6 Section 5 Molecular Geometry pages 197-207
VSEPR Theory Valence-Shell Electron-Pair Repulsion Repulsions between the set of valence-level electrons surrounding an atom causes these sets to be oriented as far apart as possible. Chapter 6 Section 5 Molecular Geometry pages
5
VSPRE & Molecular Geometry
p. xx Chapter 6 Section 5 Molecular Geometry pages
6
Chapter 6 Section 5 Molecular Geometry pages 197-207
Geometry & Lone Pairs Chapter 6 Section 5 Molecular Geometry pages
7
Chapter 6 Section 5 Molecular Geometry pages 197-207
LINEAR Example formula: BeF2 Type of molecule: AB2 Bond angle: 180° Shared pairs on the central atom: 2 Unshared pairs on the central atom: 0 : : :F - Be - F: : : Chapter 6 Section 5 Molecular Geometry pages
8
Chapter 6 Section 5 Molecular Geometry pages 197-207
TRIGONAL PLANAR Example formula: BF3 Type of molecule: AB3 Bond angle: 120° Shared pairs on the central atom: 3 Unshared pairs on the central atom: 0 :F : F: : B :F: : Chapter 6 Section 5 Molecular Geometry pages
9
Chapter 6 Section 5 Molecular Geometry pages 197-207
TETRAHEDRAL Example formula: CH4 Type of molecule: AB4 Bond angle: 109.5° Shared pairs on the central atom: 4 Unshared pairs on the central atom: 0 H C H H H Chapter 6 Section 5 Molecular Geometry pages
10
Chapter 6 Section 5 Molecular Geometry pages 197-207
ANGULAR Example formula: H2O Type of molecule: AB2E2 Bond angle: 105° Shared pairs on the central atom: 2 Unshared pairs on the central atom: 2 O : : H H Chapter 6 Section 5 Molecular Geometry pages
11
Chapter 6 Section 5 Molecular Geometry pages 197-207
TRIGONAL PYRAMIDAL Example formula: NH3 Type of molecule: AB3E Bond angle: 107° Shared pairs on the central atom: 3 Unshared pairs on the central atom: 1 : N H H H Chapter 6 Section 5 Molecular Geometry pages
12
Chapter 6 Section 5 Molecular Geometry pages 197-207
Unshared pairs occupies more space around the central atom than shared pairs Unshared pairs repel other electrons more strongly than shared pairs Multiple bonds are treated the same as single bonds Polyatomic ions are treated like molecules. Chapter 6 Section 5 Molecular Geometry pages
13
Chapter 6 Section 5 Molecular Geometry pages 197-207
CO2 ClO3 1- Practice Problems page 201 CF4 NO3 1- Chapter 6 Section 5 Molecular Geometry pages
14
Chapter 6 Section 5 Molecular Geometry pages 197-207
Hybridization The mixing of two or more atomic orbitals of similar energies on the same atom to produce new hybrid atomic orbitals of equal energy Example CH4 C = _ _ __ 1s 2s 2p _ _ _ _ 1s sp3 Chapter 6 Section 5 Molecular Geometry pages
15
Chapter 6 Section 5 Molecular Geometry pages 197-207
Hybridization s and p orbitals have different shapes The 2s & 2p hybridize to make four identical orbitals named sp3 The 3 is from the three p orbitals used But the 1 is not written for the s Chapter 6 Section 5 Molecular Geometry pages
16
Chapter 6 Section 5 Molecular Geometry pages 197-207
Hybridization All sp3 orbitals have the same energy Higher than 2s but Lower than 2p Hybrid orbitals – orbitals of equal energy produced by the combination of two or more orbitals. Chapter 6 Section 5 Molecular Geometry pages
17
Chapter 6 Section 5 Molecular Geometry pages 197-207
Hybridization N = _ _ _ 1s 2s 2p _ _ _ 1s sp3 O = _ _ _ _ Chapter 6 Section 5 Molecular Geometry pages
18
Chapter 6 Section 5 Molecular Geometry pages 197-207
Hybridization Be = 1s 2s _ _ __ 1s sp B = _ __ __ 1s 2s 2p _ _ _ __ 1s sp2 Uses one p orbital Uses two p orbitals Chapter 6 Section 5 Molecular Geometry pages
19
Chapter 6 Section 5 Molecular Geometry pages 197-207
Hybridization p. xx Chapter 6 Section 5 Molecular Geometry pages
20
Hybrid Orbital Animation
p. xx Chapter 6 Section 5 Molecular Geometry pages
21
Comparing Molecular & Ionic Compounds
p. xx Chapter 6 Section 5 Molecular Geometry pages
22
Chapter 6 Section 5 Molecular Geometry pages 197-207
Molecule Polarity δ+ δ- H - Cl 2.1 3.0 Lower EN Higher EN polar bond = dipole Dipole: created by equal but opposite charges that are separated by a short distance Chapter 6 Section 5 Molecular Geometry pages
23
bond polarity and molecule geometry.
Molecule Polarity Molecule polarity for compounds with more than one bond depends on … bond polarity and molecule geometry. Chapter 6 Section 5 Molecular Geometry pages
24
Chapter 6 Section 5 Molecular Geometry pages 197-207
Molecule Polarity Draw the Lewis Structure true to shape. Example NH3 N H : Chapter 6 Section 5 Molecular Geometry pages
25
Chapter 6 Section 5 Molecular Geometry pages 197-207
Molecule Polarity Find all the partial positive and negatives for each atom in the molecule δ- 3.0 : N 2.1 H H H δ+ δ+ δ+ High EN = δ Low EN = δ+ Look at each bond. Chapter 6 Section 5 Molecular Geometry pages
26
H N : H H Molecule Polarity
Look at around the “outside” of the molecule. δ- : N H H H δ+ δ+ δ+ All the same δ = NP; Different δ = P Chapter 6 Section 5 Molecular Geometry pages
27
Chapter 6 Section 5 Molecular Geometry pages 197-207
Molecule Polarity Draw the Lewis Structure true to shape. Example CH4 C H Chapter 6 Section 5 Molecular Geometry pages
28
Chapter 6 Section 5 Molecular Geometry pages 197-207
Molecule Polarity Find all the partial positive and negatives for each atom in the molecule δ+ C H 2.1 2.5 δ- 2.1 δ+ δ+ 2.1 2.1 δ+ Look at each bond. High EN = δ Low EN = δ+ Chapter 6 Section 5 Molecular Geometry pages
29
C H Molecule Polarity Look at around the “outside” of the molecule. δ+
δ- δ+ δ+ δ+ Carbon is not on the “outside”. All the same δ = NP; Different δ = P Chapter 6 Section 5 Molecular Geometry pages
30
Intermolecular Forces
The force of attraction between molecules to make (solids or) liquids Boiling point is a good measure of the strength of intermolecular forces Weaker than covalent bonds, ionic bonds and metallic bonds Chapter 6 Section 5 Molecular Geometry pages
31
Chapter 6 Section 5 Molecular Geometry pages 197-207
Molecule Polarity H - Cl δ+ δ- H - Cl δ+ δ- Dipole-dipole force: the force of attraction between polar molecules Chapter 6 Section 5 Molecular Geometry pages
32
Dipole Dipole Animation
p. xx Chapter 6 Section 5 Molecular Geometry pages
33
Comparing Dipole Dipole Forces
p. xx Chapter 6 Section 5 Molecular Geometry pages
34
Chapter 6 Section 5 Molecular Geometry pages 197-207
Hydrogen Bonding H-F, H-O or H-N bonds have a large electronegativity difference These bonds are very polar. Molecules with these bonds have very strong dipole-dipole forces Chapter 6 Section 5 Molecular Geometry pages
35
Chapter 6 Section 5 Molecular Geometry pages 197-207
Hydrogen Bonding p. xx Chapter 6 Section 5 Molecular Geometry pages
36
Chapter 6 Section 5 Molecular Geometry pages 197-207
Hydrogen Bonding The intermolecular force in which a Hydrogen atom that is bonded to Nitrogen or Oxygen or Fluorine is attracted to an unshared pair of electrons of the N, O or F of another molecule Chapter 6 Section 5 Molecular Geometry pages
37
Chapter 6 Section 5 Molecular Geometry pages 197-207
Hydrogen Bonding Compare PH3 & NH3 H2O & H2S Page 204 Chapter 6 Section 5 Molecular Geometry pages
38
Chapter 6 Section 5 Molecular Geometry pages 197-207
p. xx Dipole Induced Dipole Chapter 6 Section 5 Molecular Geometry pages
39
Chapter 6 Section 5 Molecular Geometry pages 197-207
Induced Dipole Polar molecules cause a dipole in a nonpolar molecule H δ+ δ- δ+ : : : O O O δ- : : : H δ+ Chapter 6 Section 5 Molecular Geometry pages
40
London Dispersion Forces
Nonpolar molecules don’t have dipoles However at any instance the electron distribution may be uneven. An instantaneous dipole can occur and induce dipoles in other molecules Chapter 6 Section 5 Molecular Geometry pages
41
London Dispersion Force
p. xx Chapter 6 Section 5 Molecular Geometry pages
42
London Dispersion Forces
London dispersion forces – the intermolecular attraction resulting from the constant motion of electrons and the creation of instantaneous dipoles Very weak intermolecular forces London forces increase with increasing atomic or molar mass. Chapter 6 Section 5 Molecular Geometry pages
43
Lewis Structures Practice
C2H4 BeF2 AsH3 IBr CHCl3 CN 1- N2O2 Lewis Structures Practice Chapter 6 Section 5 Molecular Geometry pages
44
Lewis Structures Practice
C2Cl4 SCl2 AsF5 CI2Cl2 BF3 NO 1- CH2O IO3 1- Lewis Structures Practice Chapter 6 Section 5 Molecular Geometry pages
45
Section 5 Homework Chapter 6 Section 5 Worksheet
Chapter 6 Section 5 Molecular Geometry pages
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.