Presentation is loading. Please wait.

Presentation is loading. Please wait.

Modern Chemistry Chapter 6 Chemical Bonding

Similar presentations


Presentation on theme: "Modern Chemistry Chapter 6 Chemical Bonding"— Presentation transcript:

1 Modern Chemistry Chapter 6 Chemical Bonding
Sections 1-5 Introduction to Chemical Bonding Covalent Bonding & Molecular Compounds Ionic Bonding & Ionic Compounds Metallic Bonding Molecular Geometry Chapter 6 Section 5 Molecular Geometry pages

2 Chapter 6 Section 5 Molecular Geometry pages 197-207
VSEPR theory Hybridization Hybrid orbitals Dipole Hydrogen bonding London dispersion forces Chapter Vocabulary Chapter 6 Section 5 Molecular Geometry pages

3 Chapter 6 Section 5 Molecular Geometry pages 197-207

4 Chapter 6 Section 5 Molecular Geometry pages 197-207
VSEPR Theory Valence-Shell Electron-Pair Repulsion Repulsions between the set of valence-level electrons surrounding an atom causes these sets to be oriented as far apart as possible. Chapter 6 Section 5 Molecular Geometry pages

5 VSPRE & Molecular Geometry
p. xx Chapter 6 Section 5 Molecular Geometry pages

6 Chapter 6 Section 5 Molecular Geometry pages 197-207
Geometry & Lone Pairs Chapter 6 Section 5 Molecular Geometry pages

7 Chapter 6 Section 5 Molecular Geometry pages 197-207
LINEAR Example formula: BeF2 Type of molecule: AB2 Bond angle: 180° Shared pairs on the central atom: 2 Unshared pairs on the central atom: 0 : : :F - Be - F: : : Chapter 6 Section 5 Molecular Geometry pages

8 Chapter 6 Section 5 Molecular Geometry pages 197-207
TRIGONAL PLANAR Example formula: BF3 Type of molecule: AB3 Bond angle: 120° Shared pairs on the central atom: 3 Unshared pairs on the central atom: 0 :F : F: : B :F: : Chapter 6 Section 5 Molecular Geometry pages

9 Chapter 6 Section 5 Molecular Geometry pages 197-207
TETRAHEDRAL Example formula: CH4 Type of molecule: AB4 Bond angle: 109.5° Shared pairs on the central atom: 4 Unshared pairs on the central atom: 0 H C H H H Chapter 6 Section 5 Molecular Geometry pages

10 Chapter 6 Section 5 Molecular Geometry pages 197-207
ANGULAR Example formula: H2O Type of molecule: AB2E2 Bond angle: 105° Shared pairs on the central atom: 2 Unshared pairs on the central atom: 2 O : : H H Chapter 6 Section 5 Molecular Geometry pages

11 Chapter 6 Section 5 Molecular Geometry pages 197-207
TRIGONAL PYRAMIDAL Example formula: NH3 Type of molecule: AB3E Bond angle: 107° Shared pairs on the central atom: 3 Unshared pairs on the central atom: 1 : N H H H Chapter 6 Section 5 Molecular Geometry pages

12 Chapter 6 Section 5 Molecular Geometry pages 197-207
Unshared pairs occupies more space around the central atom than shared pairs Unshared pairs repel other electrons more strongly than shared pairs Multiple bonds are treated the same as single bonds Polyatomic ions are treated like molecules. Chapter 6 Section 5 Molecular Geometry pages

13 Chapter 6 Section 5 Molecular Geometry pages 197-207
CO2 ClO3 1- Practice Problems page 201 CF4 NO3 1- Chapter 6 Section 5 Molecular Geometry pages

14 Chapter 6 Section 5 Molecular Geometry pages 197-207
Hybridization The mixing of two or more atomic orbitals of similar energies on the same atom to produce new hybrid atomic orbitals of equal energy Example CH4 C =   _ _ __ 1s 2s 2p  _ _ _ _ 1s sp3 Chapter 6 Section 5 Molecular Geometry pages

15 Chapter 6 Section 5 Molecular Geometry pages 197-207
Hybridization s and p orbitals have different shapes The 2s & 2p hybridize to make four identical orbitals named sp3 The 3 is from the three p orbitals used But the 1 is not written for the s Chapter 6 Section 5 Molecular Geometry pages

16 Chapter 6 Section 5 Molecular Geometry pages 197-207
Hybridization All sp3 orbitals have the same energy Higher than 2s but Lower than 2p Hybrid orbitals – orbitals of equal energy produced by the combination of two or more orbitals. Chapter 6 Section 5 Molecular Geometry pages

17 Chapter 6 Section 5 Molecular Geometry pages 197-207
Hybridization N =   _ _ _ 1s 2s 2p   _ _ _ 1s sp3 O =    _ _    _ _ Chapter 6 Section 5 Molecular Geometry pages

18 Chapter 6 Section 5 Molecular Geometry pages 197-207
Hybridization Be =   1s 2s  _ _ __ 1s sp B =   _ __ __ 1s 2s 2p  _ _ _ __ 1s sp2 Uses one p orbital Uses two p orbitals Chapter 6 Section 5 Molecular Geometry pages

19 Chapter 6 Section 5 Molecular Geometry pages 197-207
Hybridization p. xx Chapter 6 Section 5 Molecular Geometry pages

20 Hybrid Orbital Animation
p. xx Chapter 6 Section 5 Molecular Geometry pages

21 Comparing Molecular & Ionic Compounds
p. xx Chapter 6 Section 5 Molecular Geometry pages

22 Chapter 6 Section 5 Molecular Geometry pages 197-207
Molecule Polarity δ+ δ- H - Cl 2.1 3.0 Lower EN Higher EN polar bond = dipole Dipole: created by equal but opposite charges that are separated by a short distance Chapter 6 Section 5 Molecular Geometry pages

23 bond polarity and molecule geometry.
Molecule Polarity Molecule polarity for compounds with more than one bond depends on … bond polarity and molecule geometry. Chapter 6 Section 5 Molecular Geometry pages

24 Chapter 6 Section 5 Molecular Geometry pages 197-207
Molecule Polarity Draw the Lewis Structure true to shape. Example NH3 N H : Chapter 6 Section 5 Molecular Geometry pages

25 Chapter 6 Section 5 Molecular Geometry pages 197-207
Molecule Polarity Find all the partial positive and negatives for each atom in the molecule δ- 3.0 : N 2.1 H H H δ+ δ+ δ+ High EN = δ Low EN = δ+ Look at each bond. Chapter 6 Section 5 Molecular Geometry pages

26 H N : H H Molecule Polarity
Look at around the “outside” of the molecule. δ- : N H H H δ+ δ+ δ+ All the same δ = NP; Different δ = P Chapter 6 Section 5 Molecular Geometry pages

27 Chapter 6 Section 5 Molecular Geometry pages 197-207
Molecule Polarity Draw the Lewis Structure true to shape. Example CH4 C H Chapter 6 Section 5 Molecular Geometry pages

28 Chapter 6 Section 5 Molecular Geometry pages 197-207
Molecule Polarity Find all the partial positive and negatives for each atom in the molecule δ+ C H 2.1 2.5 δ- 2.1 δ+ δ+ 2.1 2.1 δ+ Look at each bond. High EN = δ Low EN = δ+ Chapter 6 Section 5 Molecular Geometry pages

29 C H Molecule Polarity Look at around the “outside” of the molecule. δ+
δ- δ+ δ+ δ+ Carbon is not on the “outside”. All the same δ = NP; Different δ = P Chapter 6 Section 5 Molecular Geometry pages

30 Intermolecular Forces
The force of attraction between molecules to make (solids or) liquids Boiling point is a good measure of the strength of intermolecular forces Weaker than covalent bonds, ionic bonds and metallic bonds Chapter 6 Section 5 Molecular Geometry pages

31 Chapter 6 Section 5 Molecular Geometry pages 197-207
Molecule Polarity H - Cl δ+ δ- H - Cl δ+ δ- Dipole-dipole force: the force of attraction between polar molecules Chapter 6 Section 5 Molecular Geometry pages

32 Dipole Dipole Animation
p. xx Chapter 6 Section 5 Molecular Geometry pages

33 Comparing Dipole Dipole Forces
p. xx Chapter 6 Section 5 Molecular Geometry pages

34 Chapter 6 Section 5 Molecular Geometry pages 197-207
Hydrogen Bonding H-F, H-O or H-N bonds have a large electronegativity difference These bonds are very polar. Molecules with these bonds have very strong dipole-dipole forces Chapter 6 Section 5 Molecular Geometry pages

35 Chapter 6 Section 5 Molecular Geometry pages 197-207
Hydrogen Bonding p. xx Chapter 6 Section 5 Molecular Geometry pages

36 Chapter 6 Section 5 Molecular Geometry pages 197-207
Hydrogen Bonding The intermolecular force in which a Hydrogen atom that is bonded to Nitrogen or Oxygen or Fluorine is attracted to an unshared pair of electrons of the N, O or F of another molecule Chapter 6 Section 5 Molecular Geometry pages

37 Chapter 6 Section 5 Molecular Geometry pages 197-207
Hydrogen Bonding Compare PH3 & NH3 H2O & H2S Page 204 Chapter 6 Section 5 Molecular Geometry pages

38 Chapter 6 Section 5 Molecular Geometry pages 197-207
p. xx Dipole Induced Dipole Chapter 6 Section 5 Molecular Geometry pages

39 Chapter 6 Section 5 Molecular Geometry pages 197-207
Induced Dipole Polar molecules cause a dipole in a nonpolar molecule H δ+ δ- δ+ : : : O O O δ- : : : H δ+ Chapter 6 Section 5 Molecular Geometry pages

40 London Dispersion Forces
Nonpolar molecules don’t have dipoles However at any instance the electron distribution may be uneven. An instantaneous dipole can occur and induce dipoles in other molecules Chapter 6 Section 5 Molecular Geometry pages

41 London Dispersion Force
p. xx Chapter 6 Section 5 Molecular Geometry pages

42 London Dispersion Forces
London dispersion forces – the intermolecular attraction resulting from the constant motion of electrons and the creation of instantaneous dipoles Very weak intermolecular forces London forces increase with increasing atomic or molar mass. Chapter 6 Section 5 Molecular Geometry pages

43 Lewis Structures Practice
C2H4 BeF2 AsH3 IBr CHCl3 CN 1- N2O2 Lewis Structures Practice Chapter 6 Section 5 Molecular Geometry pages

44 Lewis Structures Practice
C2Cl4 SCl2 AsF5 CI2Cl2 BF3 NO 1- CH2O IO3 1- Lewis Structures Practice Chapter 6 Section 5 Molecular Geometry pages

45 Section 5 Homework Chapter 6 Section 5 Worksheet
Chapter 6 Section 5 Molecular Geometry pages


Download ppt "Modern Chemistry Chapter 6 Chemical Bonding"

Similar presentations


Ads by Google