Download presentation
Presentation is loading. Please wait.
Published byJunior Black Modified over 9 years ago
1
Transcription
2
the Central Dogma DNA mRNA Protein transcription translation gene expression RPE65 gene RPE65 protein
3
Transcription Individual DNA regions (genes) copied to mRNA One DNA strand is template Single-stranded RNA produced template strand mRNA template strand
4
Transcription Overview Un beau jour, je suis allé au marché pour acheter du pain. Il faisait chaud. Alors, j’ai acheté aussi un limonade. Il faisait chaud.
5
mRNA DNA transcription CUACGAGGAGGUGAAGCGAUGCCCCGUAGCCGAUAGUAGC CTACGAGGAGGTGAAGCGATGCCCCGTAGCCGATAGTAGC GATGCTCCTCCACTTCGCTACGGGGCATCGGCTATCATCG gene What do we call this strand? Transcription overview
6
mRNA DNA transcription CUACGAGGAGGUGAAGCGAUGCCCCGUAGCCGAUAGUAGC CTACGAGGAGGTGAAGCGATGCCCCGTAGCCGATAGTAGC GATGCTCCTCCACTTCGCTACGGGGCATCGGCTATCATCG template strand What enzyme makes RNA? Transcription overview
7
mRNA DNA transcription – RNA polymerase CUACGAGGAGGUGAAGCGAUGCCCCGUAGCCGAUAGUAGC CTACGAGGAGGTGAAGCGATGCCCCGTAGCCGATAGTAGC GATGCTCCTCCACTTCGCTACGGGGCATCGGCTATCATCG template strand What direction is mRNA made? Transcription overview
8
mRNA DNA transcription – RNA polymerase CUACGAGGAGGUGAAGCGAUGCCCCGUAGCCGAUAGUAGC 3’3’ 5’5’ CTACGAGGAGGTGAAGCGATGCCCCGTAGCCGATAGTAGC GATGCTCCTCCACTTCGCTACGGGGCATCGGCTATCATCG template strand What direction is the template strand read? Transcription overview
9
mRNA DNA transcription – RNA polymerase CUACGAGGAGGUGAAGCGAUGCCCCGUAGCCGAUAGUAGC 3’3’ 5’5’ CTACGAGGAGGTGAAGCGATGCCCCGTAGCCGATAGTAGC GATGCTCCTCCACTTCGCTACGGGGCATCGGCTATCATCG Which strand does the mRNA look like? 5’5’3’3’ Transcription overview
10
mRNA DNA transcription – RNA polymerase CUACGAGGAGGUGAAGCGAUGCCCCGUAGCCGAUAGUAGC 3’3’ 5’5’ CTACGAGGAGGTGAAGCGATGCCCCGTAGCCGATAGTAGC GATGCTCCTCCACTTCGCTACGGGGCATCGGCTATCATCG How do we know where to start and stop? 5’5’3’3’ Transcription overview
11
RNA polymerase synthesizes RNA 5 ′→ 3′ Starts at promoter, ends at terminator promoterterminator +1+1 5 ′ UTR coding region start codon stop codon “upstream”“downstream” DNA transcription coding region start codon stop codon 3 ′ UTR 5′5′ 3′3′ mRNA translation NH 3 COOH protein How is the RNA actually made?
12
Prokaryotic transcription Promoter: -10 and -35 sequences DNA -35-10+1 mRNA 5′ TTGACAT AACTGTA 5′ TATAAT ATATTA 5’5’ 3’3’
13
Prokaryotic transcription Promoter: -10 and -35 sequences DNA -35-10+1 mRNA TTGACAT TATAAT 5’5’ 3’3’
14
Prokaryotic transcription Initiation: RNAP sigma subunit (σ) binds -10 and -35 DNA -35-10+1 σ 5’5’ 3’3’
15
Prokaryotic transcription Initiation: RNAP core (α 2 ββ’) binds sigma DNA -35-10+1 σ α 2 ββ’ “core” 5’5’ 3’3’
16
Prokaryotic transcription Initiation: Promoter determines template strand and direction -35 5′5′5′5′ 3′3′3′3′ 3′3′3′3′ 5′5′5′5′-10 -35-10 template strand for gene 1 template strand for gene 2
17
Regulatory elements Prokaryotes use operator sequences DNA -35-10+1 mRNA TTGACAT TATAAT 5’5’ 3’3’ Operators Protein Transcription factors
18
Prokaryotic transcription Initiation: RNAP opens transcription bubble (helicase activity) DNA -35-10 σ +1 5’5’ 3’3’
19
Prokaryotic transcription Initiation: RNAP begins mRNA synthesis at +1 DNA -35-10 σ +1 5’5’ 3’3’ mRNA
20
Prokaryotic transcription Initiation: Sigma released DNA -35-10 σ +1 5’5’ 3’3’ mRNA
21
Elongation: Prokaryotic transcription DNA -35-10 5’5’ 3’3’
22
Elongation: Prokaryotic transcription DNA 5’5’ 3’3’ terminator
23
ReplicationTranscription Synthesize DNA Copy whole genome Copy both strands Need primer 5 ′ → 3 ′ Multiple enzymes How are replication and transcription similar? How are they different? Synthesize RNA Copy one gene Copy one strand No primer 5 ′ → 3 ′ Only RNA polymerase
24
Eukaryotic transcription 3 RNA polymerases: RNA polymerase I – rRNA RNA polymerase II – mRNA RNA polymerase III – tRNA RNA polymerase II from yeast
25
Eukaryotic transcription RNAP II recognizes: TFIID bound to TATA box (TATAAA) TFIIB bound to TFIID Transcription factors bound to enhancer sequences +1+1 Enhancers Transcription factors Sp1 hERR 1 CAATGATATATA box TFIIBTFIID
26
Eukaryotic transcription RNAP II recognizes: TFIID bound to TATA box (TATAAA) TFIIB bound to TFIID Transcription factors bound to enhancer sequences +1+1
27
Different from Prokaryotes- No terminator! RNA cleaved from transcription complex +1+1 AAUAAA Eukaryotic Transcription Termination
28
RNA processing in eukaryotes DNA promoter exons introns primary transcript (nucleus) 5’ cap AAAAAAAAA 3’ poly-A tail AAAAAAAAA splicing transcription unbroken coding sequence transport to cytoplasm for translation final mRNA
29
methylated guanine “backward” 5 ′ to 5 ′ linkage Not encoded in DNA Capping enzyme Recognition by ribosome 5′ cap 5′ AGACCUGACCAUACC
30
RNA processing in eukaryotes DNA promoter exons introns primary transcript (nucleus) 5’ cap AAAAAAAAA 3’ poly-A tail AAAAAAAAA splicing transcription unbroken coding sequence transport to cytoplasm for translation final mRNA
31
3′ poly(A) tail Poly(A) polymerase Add ~200 A’s Not in template Important for: Export of mRNA Initiation of Translation Stability of mRNA …UGGCAGACCUGACCA 3′ …UGGCAGACCUGACCAAAAAAAAAAAAAAAAAAAA
32
RNA processing in eukaryotes DNA promoter exons introns primary transcript (nucleus) 5’ cap AAAAAAAAA 3’ poly-A tail AAAAAAAAA splicing transcription unbroken coding sequence transport to cytoplasm for translation final mRNA
33
Splicing Most genes interrupted by introns Introns removed after transcription Exons spliced together 5’ cap AAAAAAAAA 3’ poly-A tail AAAAAAAAA splicing unbroken coding sequence final mRNA
34
Splicing snRNPs recognize exon-intron boundaries RNA + protein Cut and rejoin mRNA
35
Splicing RPE65 mRNA in nucleus: 21,000 nt (14 exons) AAAAAAAAA splicing mature RPE65 mRNA in nucleus: 1,700 nt (8%)
36
Splicing Alternative splicing: >1 protein from one gene 27,000 human genes, but >100,000 proteins
37
Splicing Mutations affecting splicing can cause genetic disease: cystic fibrosisretinitis pigmentosa spinal muscular atrophyPrader-Willi syndrome Huntington diseasespinocerebellar ataxia myotonic dystrophyFragile-X syndrome Or produce genetic susceptibility to disease: lupusbipolar disorder schizophreniamyocardial infarction type I diabetesasthma cardiac hypertrophymultiple sclerosis autoimmune diseaseselevated cholesterol
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.