Presentation is loading. Please wait.

Presentation is loading. Please wait.

Carotid Artery Palpation External pressure on carotid artery may slow HR External pressure on carotid artery may slow HR Due to direct stimulation of.

Similar presentations


Presentation on theme: "Carotid Artery Palpation External pressure on carotid artery may slow HR External pressure on carotid artery may slow HR Due to direct stimulation of."— Presentation transcript:

1

2 Carotid Artery Palpation External pressure on carotid artery may slow HR External pressure on carotid artery may slow HR Due to direct stimulation of barorecptor in carotid artery Due to direct stimulation of barorecptor in carotid artery Still appropriate site to measure HR during ex. Still appropriate site to measure HR during ex.

3 Cortical Input Impulses from cerebral cortex pass via small afferent nerves through CVC in medulla Impulses from cerebral cortex pass via small afferent nerves through CVC in medulla Allows emotional state to influence CV response Allows emotional state to influence CV response Impulses cause HR to rise rapidly prior to ex. (anticipatory HR) Impulses cause HR to rise rapidly prior to ex. (anticipatory HR)

4 Probably due to increase in sympathetic discharge and a decrease in vagal tone Probably due to increase in sympathetic discharge and a decrease in vagal tone Magnitude of increase is greatest in short sprint events and lower in longer events Magnitude of increase is greatest in short sprint events and lower in longer events Represents a 74% increase of HR during a 60 yd sprint Represents a 74% increase of HR during a 60 yd sprint Large portion of HR adjustment to exercise reflects the cortical input that occurs during initial stages of activity Large portion of HR adjustment to exercise reflects the cortical input that occurs during initial stages of activity Receptors in joints and muscles (muscle afferents) probably provide a large amount of input to increase HR during initial stages as well Receptors in joints and muscles (muscle afferents) probably provide a large amount of input to increase HR during initial stages as well

5 Heart as a pump increase HR  increase in SV; limitations Once HR reaches a certain level, strength of contraction decreases, may be due to overuse of substrates in cardiac muscle Once HR reaches a certain level, strength of contraction decreases, may be due to overuse of substrates in cardiac muscle Period of diastole is so short, cannot fill adequately Period of diastole is so short, cannot fill adequately

6 with artificial stimulation: peak ability to pump blood is 100-150 bpm with artificial stimulation: peak ability to pump blood is 100-150 bpm with sympathetic stimulation: increase HR and strength of contraction peak ability: 170-220 bpm with sympathetic stimulation: increase HR and strength of contraction peak ability: 170-220 bpm

7 Cardiac Contractility ΔP/ Δt: rate of change of ventricular pressure with respect to time ΔP/ Δt: rate of change of ventricular pressure with respect to time way to assess the strength of the contraction of the heart way to assess the strength of the contraction of the heart as ventricular pressure increases at its most rapid rate, the ΔP/ Δt also peaks as ventricular pressure increases at its most rapid rate, the ΔP/ Δt also peaks

8 usually, rate of rise of ventricular pressure correlates well with strength of ventricular contraction…….. two factors that influence ΔP/ Δt which are not related to cardiac contractility are: usually, rate of rise of ventricular pressure correlates well with strength of ventricular contraction…….. two factors that influence ΔP/ Δt which are not related to cardiac contractility are: 1. Increased input pressure to the left ventricle (EDV, preload) 2. Pressure in the aorta, afterload

9 Influence of Potassium and Calcium ions Excess potassium in extracellular fluids causes heart to become dilated, flaccid, and slows HR large quantities can block the cardiac impulse from the atria to the ventricles via AV bundle large quantities can block the cardiac impulse from the atria to the ventricles via AV bundle elevations of 2-3X normal can weaken heart enough to lead to death elevations of 2-3X normal can weaken heart enough to lead to death

10 high extracellular potassium concentrations can cause a decrease in the resting membrane potential in cardiac muscle fibers high extracellular potassium concentrations can cause a decrease in the resting membrane potential in cardiac muscle fibers lower resting membrane potential  decrease in AP potential  weaker contraction lower resting membrane potential  decrease in AP potential  weaker contraction

11 Excess calcium causes opposite effect heart goes into spastic contraction heart goes into spastic contraction due to direct influence of calcium ions in exciting the cardiac contractile process due to direct influence of calcium ions in exciting the cardiac contractile process deficiency in calcium will cause flaccidity, similar to excess potassium deficiency in calcium will cause flaccidity, similar to excess potassium changes due to calcium are rare, blood levels are tightly controlled changes due to calcium are rare, blood levels are tightly controlled

12 Temperature increased T will increase HR, sometimes as much as 2X increased T will increase HR, sometimes as much as 2X decreased T will cause decreased HR, as low as few bpm when body temperature is 60-70  F, near death decreased T will cause decreased HR, as low as few bpm when body temperature is 60-70  F, near death moderate T increase can enhance the contractile strength of the heart moderate T increase can enhance the contractile strength of the heart prolonged elevation in T can cause an exhaustion of the metabolic systems of the heart, causing weakness prolonged elevation in T can cause an exhaustion of the metabolic systems of the heart, causing weakness

13 Blood Transport arteries carry oxygenated blood (except pulmonary artery) can withstand high pressures can withstand high pressures composed of connective tissue and smooth muscle composed of connective tissue and smooth muscle from aorta (elastic as well as muscular), through arteries, arterioles, metarterioles, and finally, capillaries from aorta (elastic as well as muscular), through arteries, arterioles, metarterioles, and finally, capillaries arterioles: smooth muscle; can constrict and dilate dependent on peripheral blood needs arterioles: smooth muscle; can constrict and dilate dependent on peripheral blood needs metarterioles are less muscular metarterioles are less muscular

14 capillaries are microscopic blood vessels which contain ~5% of the total blood volume capillaries are microscopic blood vessels which contain ~5% of the total blood volume –single layer of endothelial cells, may abut the membranes of surrounding cells –density may be 2-3,000/ mm 2 –capillary density is higher in cardiac muscle –precapillary spinchter controls the mouth of the capillary, local control of BF in the capillaries of specific tissues –~1.5 seconds to pass a blood cell through an average capillary (effective way to exchange)

15 Blood pressure surge of blood enters the aorta every time the L ventricle contracts surge of blood enters the aorta every time the L ventricle contracts portion is stored in aorta, arteries and arterioles cannot handle the rapid run off of blood equal to ejection portion is stored in aorta, arteries and arterioles cannot handle the rapid run off of blood equal to ejection causes a pressure wave through the arterial system (pulse) causes a pressure wave through the arterial system (pulse)

16 Mean arterial pressure (MAP): average pressure in the arterial system during the cardiac cycle Mean arterial pressure (MAP): average pressure in the arterial system during the cardiac cycle –spend more time in diastole, it is a little less than the average of systole and diastole

17 Veins blood flows from capillaries into venules to veins blood flows from capillaries into venules to veins blood from lower body enters heart via inferior vena cava blood from lower body enters heart via inferior vena cava blood from the head and shoulders empties into the superior vena cava blood from the head and shoulders empties into the superior vena cava when blood enters venules, the impetus for flow is minimal (low pressure) when blood enters venules, the impetus for flow is minimal (low pressure)

18 blood returns via blood returns via 1. Flap-like valves (one-way) at short intervals in the veins 2. Valves are easily compressed by neighboring muscles couple the one-way valves with the compression, milking action returns blood 65% of blood volume is in the veins at rest 65% of blood volume is in the veins at rest veins are considered capacitance vessels and reservoirs for blood veins are considered capacitance vessels and reservoirs for blood


Download ppt "Carotid Artery Palpation External pressure on carotid artery may slow HR External pressure on carotid artery may slow HR Due to direct stimulation of."

Similar presentations


Ads by Google