Download presentation
Presentation is loading. Please wait.
Published byRachel Russell Modified over 11 years ago
1
Aldo Morselli, INFN & Università di Roma Tor Vergata, aldo.morselli@roma2.infn.it 1 Andrea Lionetto INFN, Sezione di Roma 2 & Università di Roma Tor Vergata Dark Activities ASI Workshop, Frascati 3 Luglio 2007
2
Dark Matter really exist ? = M + = 1.02 0.02 ~ 0.73 M ~ 0.27 CDM ~ 0.23 b ~ 0.04 HDM, < 0.01 { Concordance model CDM ~ 6 b
3
color image from the Magellan images of the merging cluster 1E0657558 200 kpc Chandra image of the cluster weak lensing reconstruction NEWS: Dark Matter really exist ? astro-ph/0608407 Due to the collision of two clusters, the dissipationless stellar component and the fluid-likeX-ray emitting plasma are spatially segregated
4
Dark Matter Ring around Galaxy Cluster CL0024+17 M.Jee et al.,arXiv:0705.2171 1 high-speed line-of-sight collision of two massive clusters ~ 1-2 Gyr ago
5
Aldo Morselli, INFN & Università di Roma Tor Vergata, aldo.morselli@roma2.infn.it 5
6
6 1% Stars 7% Gas in vir. structures 7% WH Gas in IGM 85% DARK MATTER Baryons Non-baryonic An Inventory of Matter in the Universe So, what is Dark Matter?
7
Aldo Morselli, INFN & Università di Roma Tor Vergata, aldo.morselli@roma2.infn.it 7
8
8 Particle Physics after Big Bang
9
Supersymmetry Particle Sparticle For unbroken supersymmetry there is a mass degeneracy Sparticle have not be found at accelerators so far Supersymmetry is broken Supersymmetry breaking schemes: gravity-mediated scenarios Gauge mediated scenarios Anomaly mediated scenarios
10
Running couplings
11
Neutralino WIMPs Assume c are present in the galactic halo c Majorana particle => can annihilate in pairs in the galactic halo producing gamma-rays, antiprotons, positrons…. Antimatter not produced in large quantities through standard processes (secondary production through p + p --> p + X) So, any extra contribution from exotic sources (c c annihilation) is an interesting signature ie: c c --> p + X Produced from (e. g.) c c --> q / g / gauge boson / Higgs boson and subsequent decay and/ or hadronisation.
12
PAMELA Payload for Antimatter Matter Exploration and Light Nuclei Astrophysics In orbit on June 15, 2006, on board of the DK1 satellite by a Soyuz rocket from the Bajkonour launch site. First switch-on on June 21 2006 From July 11 Pamela is in continuous data taking mode
13
Aldo Morselli, INFN & Università di Roma Tor Vergata, aldo.morselli@roma2.infn.it 13 PAMELA
14
Aldo Morselli, INFN & Università di Roma Tor Vergata, aldo.morselli@roma2.infn.it 14 PAMELA: Cosmic-Ray Antiparticle Measurements: Antiprotons fd: Clumpiness factors needed to disentangle a neutralino induced component in the antiproton ux A.Lionetto, A.Morselli, V.Zdravkovic JCAP09(2005)010 [astro-ph/0502406] an example in mSUGRA f = the dark matter fraction concentrated in clumps d = the overdensity due to a clump with respect to the local halo density
15
Aldo Morselli, INFN & Università di Roma Tor Vergata, aldo.morselli@roma2.infn.it 15 PAMELA: Cosmic-Ray Antiparticle Measurements: Antiprotons contribution background totalMSSM fd: Clumpiness factors needed to disentangle a neutralino induced component in the antiproton ux A.Lionetto, A.Morselli, V.Zdravkovic JCAP09(2005)010 [ astro-ph/0502406]
16
Where should we look for WIMPs with GLAST? Galactic center Galactic satellites Galactic halo Extra-galactic
17
Aldo Morselli, INFN & Università di Roma Tor Vergata, aldo.morselli@roma2.infn.it 17 Sun Galactic Center
18
Signal rate from Supersymmetry governed by supersymmetric parameters governed by halo distribution gamma-ray flux from neutralino annihilation J( ):
19
Model independent results for the GC Assume a truncated NFW profile Assume a dominant annihilation channel (good assumption except for + - ) Differential yield for each annihilation channel WIMP mass=200GeV figure from: A.Cesarini, F.Fucito, A.Lionetto, A.Morselli, P.Ullio, Astroparticle Physics, 21, 267-285, June 2004 [astro-ph/0305075]
20
Aldo Morselli, INFN & Università di Roma Tor Vergata, aldo.morselli@roma2.infn.it 20 neutralino mass Differential yield for b bar
21
Aldo Morselli, INFN & Università di Roma Tor Vergata, aldo.morselli@roma2.infn.it 21 EGRET data & Susy models ~2 degrees around the galactic center EGRET data Annihilation channel W + W - M =80.3 GeV background model(Galprop) WIMP annihilation (DarkSusy) Total Contribution A.Morselli, A. Lionetto, A. Cesarini, F. Fucito, P. Ullio, astro-ph/0211327 N b =1.82 10 21 N =8. 51 10 4 Typical N values: NFW: N = 10 4 Moore: N = 9 10 6 Isotermal: N = 3 10 1
22
Aldo Morselli, INFN & Università di Roma Tor Vergata, aldo.morselli@roma2.infn.it 22 ~2 degrees around the galactic center, 2 years data (Galprop) (one example from DarkSusy) GLAST Expectation & Susy models astro-ph/0305075 A.Cesarini, F.Fucito, A.Lionetto, A.Morselli, P.Ullio, Astroparticle Physics, 21, 267-285, June 2004 [astro-ph/0305075] N b =1.82 10 21 N =8.51 10 4 Typical N values: NFW: N = 10 4 Moore: N = 9 10 6 Isotermal: N = 3 10 1 Annihilation channel W + W - M =80 GeV
23
Model independent results for the GC 3 Max background Min background
24
Aldo Morselli, INFN & Università di Roma Tor Vergata, aldo.morselli@roma2.infn.it 24 EGRET, E > 1GeV Mayer- Hasselwander et al, 1998 Integral data 2 0 x 2 0 field IBIS/ISGRI 20–40 keV
25
Aldo Morselli, INFN & Università di Roma Tor Vergata, aldo.morselli@roma2.infn.it 25 1 pixel ~ 5 arcmin 2 0 x 2 0 field IBIS/ISGRI 20–40 keV Point source location for GLAST~ 5 arcmin
26
Galactic Center HESS and MAGIC Spectrum Unbroken power-law. Hard spectrum = 2.2. No evidence for variability on a variety of time scales. Consistent with SGR A* to 6 and slightly extended. SGR A Good agreement between HESS and MAGIC (large zenith angle observation). astro-ph/0512469
27
Aldo Morselli, INFN & Università di Roma Tor Vergata, aldo.morselli@roma2.infn.it 27 EGRET, GLAST, HESS, MAGIC it might still be that a DM component could be singled out, e.g. the EGRET source (?): a DM source can fit the EGRET data; GLAST would detect its spectral and angular signatures and identify without ambiguity such DM source!
28
Model independent results for the GC 3 Max background Min background Excluded by HESS and MAGIC
29
Satellites Optimistic case: 70 counts signal, 43 counts background within 1.5 deg of clump center 55-days GLAST in-orbit counts map (E>1GeV) Galactic Center 30-deg latitude Larry Wai et al. for the DM&NP Working Group
30
The search for milky way halo substructure WIMP annihilations using the GLAST LAT Dark matter calculation with semi-analytic method of Taylor & Babul 2004, 2005 Background estimate using EGRET above 1GeV (source subtracted) M=100GeV = 2.3x10 -26 cm 3 s -1
31
GLAST sensitivity map for the identification of point sources of Dark Matter annihilation G.Bertone et al. astro-ph/0612387
32
Cosmological Wimp annihiliation spectrum
33
spectral fits of simulated DM point sources
34
Supersymmetry introduces free parameters: In the MSSM, with Grand Unification assumptions, the masses and couplings of the SUSY particles as well as their production cross sections, are entirely described once 5 parameters are fixed: M 1/2 the common mass of supersymmetric partners of gauge fields (gauginos) m 0 the common mass for scalar fermions at the GUT scale m the higgs mixing parameters that appears in the neutralino and chargino mass matrices A is the proportionality factor between the supersymmetry breaking trilinear couplings and theYukawa couplings tan b = v 2 / v 1 = / the ratio between the two vacuum expectation values of the Higgs fields
35
GLAST limits no electroweak symmetry breaking WMAP 3 allowed region (95% C.L) tg( )=55, sign( )=+1 3 σ Sensitivity plot for for GLAST for a truncated (NFW) halo profile mSUGRA Sensitivity plot for 5 years observation of mSUGRA for GLAST for tan( b )=55. GLAST 3 σ sensitivity is shown at the blue line and below for truncated NFW halo profile
36
3 σ Sensitivity plot for for GLAST for a truncated (NFW) halo profile tg( )=55, sign( )=+1 equi neutralino mass curves GLAST limits no electroweak symmetry breaking WMAP 3 allowed region (95% C.L) m =400 GeV m =200 GeV m =300 GeV mSUGRA Sensitivity plot for 5 years observation of mSUGRA for GLAST for tan( b )=55. GLAST 3 σ sensitivity is shown at the blue line and below for truncated NFW halo profile
37
LHC limits 100 fb -1 LC500 GLAST limits LC1000 limits PAMELA Limits boost factor 10 accelerator limits @ 100 fb -1 from H.Baer et al., hep-ph/0405210 GLAST, PAMELA, LHC, LC Sensitivities to Dark Matter Search mSUGRA Sensitivity plot for 5 years observation of mSUGRA for GLAST for tg(b)=55 and for other experiments. GLAST 3σ sensitivity is shown at the blue line and below for truncated NFW halo profile
38
Aldo Morselli, INFN & Università di Roma Tor Vergata, aldo.morselli@roma2.infn.it 38 no electroweak symmetry breaking LHC limits LC1000 limits LCC2 m h 0 < 114.3 GeV WMAP 3 3 allowed region GLAST limits tg( )=10, sign( )=+1 LC500 Sensitivity plot for observation of mSUGRA for a number of accelerator experiments and GLAST for tan( b )=10. GLAST 5 σ sensitivity is shown at the blue line and below a for truncated Navarro Frank and White (NFW) halo profile LCC2 from E.Baltz et al. hep- ph/0602187 mSUGRA
39
no electroweak symmetry breaking tg( )=60, sign( )=+1 WMAP 3 5 allowed region GLAST 5 limits 5 years of data 5 σ Sensitivity plot for for GLAST for a truncated NFW halo profile mSUGRA Sensitivity plot for observation of mSUGRA for GLAST for tan( )=60. GLAST 5 σ sensitivity is shown at the blue line and below a for truncated NFW halo profile
40
the end
41
Aldo Morselli, INFN & Università di Roma Tor Vergata, aldo.morselli@roma2.infn.it 41 2 0 x 2 0 field IBIS/ISGRI 20–40 keV1 pixel ~ 5 arcmin Point source location for GLAST~ 5 arcmin 2 0 x 2 0 field EGRET, E > 1GeV
42
Aldo Morselli, INFN & Università di Roma Tor Vergata, aldo.morselli@roma2.infn.it 42
44
Aldo Morselli, INFN & Università di Roma Tor Vergata, aldo.morselli@roma2.infn.it 44
45
you need a factor ~ 10- 50 with respect to the standard mSugra scenario Conclusion: GLAST limits for clumpiness factor 10
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.