Download presentation
1
BJT in Saturation Mode Section 4.5
2
Schedule 9 2/11 Tuesday Physics of a BJT 4.1-4.3 L
Measure Beta of a transistor 10 2/13 Thursday PNP 4.3, 11 2/18 BJT in saturation 4.5 BJT in saturation/BJT implementation of an NAND gate 12 2/20 Small signal model [homework: small eq. circuit]
3
Outline Modes of Operations Review of BJT in the active Region
BJT in Saturation Mode Digital Integrated Circuits
4
Modes of Operation BE\BC Forward Biased Reverse Biased Saturation
Active Reverse Active Mode Cut-Off Applications: 1. Saturation and cut-off mode are used in digital circuits. 2. Active mode is used in the amplifier design.
5
Voltage and Current Polarities of NPN and PNP transistors
A “fat” voltage between collector and emitter voltage places a transistor in the active region! A “skinny” voltage between collector and emitter voltage places a transistor in the active region!
6
Review
7
Review PN Junction Reverse Bias Forward Bias BJT in the Active Mode
8
Review: Forward Bias Diode
; Depletion region shrinks due to charges from the battery. The electric field is weaker. Majority carrier can cross via diffusion; Greater diffusion current. Current flows from P side to N side
9
Review: PN Junction under Reverse Bias
Reverse: Connect the + terminal to the n side. Depletion region widens. Therefore, stronger E. Minority carriers cross the PN junction easily through diffusion. Current is composed mostly of drift current contributed by minority carriers. np to the left and pn to the right. Current from n side to p side, the current is negative. E
10
Operation of an NPN Transistor in the Active Region
Electrons are injected into the BC junction Electrons are injected into the B; holes to the E. Electrons are swept across the reversed biased BC
11
Thin Base Region The base region is made thin in order to reduce recombination as electrons travel from BE junction to BC junction.
12
Highly Doped Emitter In order to emphasize the current contribution
due to the electrons (which can cross the BC junction), the emitter is heavily doped by N type materials.
13
Base Current The proportional of hole current and electron current
is determined by dopants (ND and NA). Even though the presence of holes are minimized, a small number holes still must enter through the base.
14
Electrons in the Base Electrons are swept Into the collector;
low electron density at x2 Electrons injected into the base; high electron density at x1. The electron gradient allows electrons to travel through diffusion.
15
Recombination Recombination
Base must supply holes that will enter the emitter and for recombination with the electrons.
16
Extension of a PNP transistor
(NPN transistor) (PNP transistor) Base-emitter junction is forward biased. Holes are injected into the base. Base-emitter junction is reverse Biased. Injected holes in the base is swept across the base-collector junction by the electric field.
17
BJT Current Assumption: BEJ: Forward Biased BCJ: Reverse Biased
18
Large Signal Model of a BJT
Called “large” signal model because this model is applicable even if VBE changes from 300 mV to 800 mV
19
Large-Signal Model of BJT Transistors
(NPN) (PNP) C C E E
20
Experiments
21
Saturation Mode
22
BJT in Saturation Mode Key assumption so far: BE=Forward Biased
BC=Reverse Biased What happens when these assumptions are not true?
23
Review: Forward Bias Diode
; Depletion region shrinks due to charges from the battery. The electric field is weaker. Majority carrier can cross the junction via diffusion; Greater diffusion current. Current flows from P side to N side
24
Hole Current into the Collector
A reverse biased BCJ keeps holes in the base. But as BCJ becomes forward biased, the strong electric field which opposes of the movement of holes into the collector is weakened. There is now a hole current into the collector. Net Result: heavy saturation leads to a sharp rise in the base current and a rapid fall in β.
25
A Large Signal Model of the BJT
The net collector current decreases as the collector enter into saturation
26
General Rules As a rule of thumb, we permit soft saturation with VBC <400 mV because the current in the B-C junction is negligible, provided that various tolerances in the component values do not drive the device into deep saturation. For a device in soft saturation or active region, we approximate IC as Isexp(VBE/VT) In the deep saturation region, the collector-emitter voltage approaches a constant value called VCE, SAT (about 200 mV).
27
Voltage and Current Polarities of NPN and PNP transistors
A “fat” voltage between collector and emitter voltage places a transistor in the active region! A “skinny” voltage between collector and emitter voltage places a transistor in the active region!
28
Use 2n3904 npn BJT in Simulation
(Error!, put 2n3904 here!)
29
Include 2n3904 (NPN) model
30
A NAND Gate Implemented With NPN Transistors
31
Optional Slides
32
BJT Inverter (Define the input voltage as a variable)
33
Run Parametric Analysis
34
Parametric Analysis
35
Select a Wire to Plot
36
Use Calculator to Plot
37
Plot with Calculator (Under Tools)
38
RTL (Resistor-Transistor Logic)
Vout VA VB First introduced in 1962! (50 years ago!) What is the logic function?
39
RTL Based NOR A B Vout 3.6 V 34.05 mV 0 V 42.59 mV 0V
NOR is an universal gate! If you can build a NOR, you can build any logic.
40
Diode-Transistor Logic
What is the logic function? This resistor allow charges to be drained from the base
41
Sweep VB VS: the input voltage at which the output is approximately 2V. VS~2V Condition: VA=4V, VC=4V. VB is swept from 0 to 4V
42
Diode-Transistor Logic
This resistor allow charges to be drained from the base
43
Sweep VB Fixed VA=4V VCC=4V Sweep VB from 0 to 4 V
Increase the VS by about one diode drop.
44
Basic TTL Gate Diode is replaced by TTL A “relative “ of 7400LS Gate
45
Sweep VB Fixed VA=4V VCC=4V Sweep VB from 0 to 4 V
46
7400 NAND Gate 7400 Schematic We will revisit this schematic in a couple of weeks!
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.