Download presentation
1
Patterns of Inheritance
Chapter 9
2
Gregor Mendel Deduced the fundamental principles of genetics
Cross-fertilization
4
What’s with the Peas? Little spontaneous variation between generations
Can self-fertilize Easy to control pollination Possessed several easily observable traits Pea form Pea color Flower location Flower color Stem size
5
What do we get?? Genetic cross P generation F1 generation
Bb x Bb P generation F1 generation F2 generation
6
Monohybrid Cross Cross between parent plants that differ in only one characteristic Mendel developed four hypotheses from the monohybrid cross: There are alternative forms of genes Alleles For each characteristic, an organism inherits two alleles One from each parent Alleles can be dominant or recessive Gametes carry only one allele for each inherited characteristic
7
Mendel’s Laws Genes Set of instructions that determine characteristics of an organism Segments of nucleic acid that specifies a trait Found at designated place on chromosomes Locus Not all copies of a gene are identical
8
Mendel’s Laws Alternative forms of a gene lead to the alternative form of a trait Alleles way of identifying the two members of a gene pair which produce opposite contrasting phenotypes Chromosomes that are homologous are members of a pair and carry genes for the same traits in the same order
9
Genes v. alleles Genes Alleles Basic instruction Sequence of DNA
General Hair color Alleles Variations of that instruction Specifics Brown hair
10
Genotype verse Phenotype
the alleles an individual receives at fertilization Homozygous an organism has two identical alleles at a gene locus Heterozygous an organism has two different alleles at a gene locus Phenotype the physical appearance of the individual
11
Describing Genotypes Homozygous Dominant
when both alleles are dominant BB Homozygous Recessive when both alleles are recessive bb Heterozygous when one allele is dominant and one is recessive Bb
12
Punnet Square….. Genetic cross determines arrangement
13
Pedigree Chart
14
Phenotypes are not always a direct translation of genotype
Phenotypes may also be influenced by the environment Examples? skin color influenced by sun height/weight influenced by nutrition animal coat influenced by climate
15
Remember….. P = G + E
16
Types of Phenotypic Traits
Discrete traits Quantitative traits
17
Types of Phenotypic Traits
1) Discrete Traits: determined by the action of a single gene Only a few distinct categories exist for trait
18
Shape of human hairline is a discrete trait
There are 2 alleles and 2 varieties: No Widow’s Peak = recessive Widow’s Peak = dominant
19
Human earlobe type is a discrete trait
There are 2 alleles and 2 varieties: Free earlobe = dominant Attached earlobe = recessive
20
Types of Phenotypic Traits
2) Quantitative Traits: determined by 2 or more genes Has a range of phenotypes for that trait
21
Height is a quantitative trait There’s a range of possible values
Others: weight, skin color
22
Past the Peas: Types of Dominance
1) Complete Dominance: 1 or other 2) Incomplete Dominance: 3rd effect 3) Codominance: some of both
23
Complete Dominance Dominant Allele is always expressed when present
Recessive Allele is only expressed as homozygote
24
Incomplete Dominance Alleles have combined (equal) effect on phenotype of heterozygote Phenotype is intermediate
25
Codominance Both alleles are visible in the phenotype of the heterozygote
26
Multiple Allelism: existence of more than 2 alleles of gene
Example: Blood type (A, B, O) Remember: Each person still only has 2 alleles for that trait, but more than 2 exist
27
Multiple Allelism: Blood typing
ABO Blood Type in Humans exhibits multiple allelism Phenotype Genotype O OO A AA or AO B BB or BO AB AB * How many ALLELES are there? 3 ( A, B, O) How many Phenotypes are there? 4 (A, B, AB, O) How many Genotypes are there? 6 What is the relationship between A and B alleles? codominance
28
Question: If a woman with blood type O marries a man with blood type B, can they have a child with blood type A? Phenotype Genotype O OO A AA or AO B BB or BO AB AB* No. The mother’s genotype must be OO and the father’s either BB or BO. Their child will either be type B (BO) or type O (OO)
29
Sex-linked Traits Female XX Male XY
Genes located on the X or Y chromosome are sex-linked X and Y chromosomes are not homologous, they contain different genes
30
Sex-linked traits Sex chromosomes Sex-linked genes
Are designated X and Y Determine an individual’s sex Influence the inheritance of certain traits Sex-linked genes Are any genes located on a sex chromosome
31
Sex-Linked Traits Females (XX) have 2 copies of each gene on the X chromosome Males (XY) have only 1 copy of each gene on the X chromosome Females can show a dominant condition if present on 1 or both X chromosomes Females can only show a recessive condition if present on both X chromosomes Males ALWAYS show X-linked alleles, regardless of dominance
32
Sex-Linked Disorders in Humans
number of human conditions result from sex-linked (X-linked) genes Red-green color blindness characterized by a malfunction of light-sensitive cells in the eyes
33
Question….. Will a mother that is colorblind automatically have a son that is colorblind?
34
Question….. Will a mother that is colorblind automatically have a son that is colorblind? Yes!!!!!
35
Beyond Simple Inheritance Patterns
Polygenic Inheritance Occurs when a trait is governed by two or more sets of alleles
36
Mutations Changes to the nucleotide sequence of the genetic material of an organism Can be caused by: copying errors in the genetic material during cell division exposure to UV light or chemical mutagens Viruses can be induced by the organism itself Create variety within gene pool Less favorable verse more favorable
37
Recessive Disorders Most human genetic disorders are recessive
Individuals can be carriers of these diseases
38
Dominant Disorders Some human genetic disorders are dominant
Achondroplasia is a form of dwarfism Huntington's disease
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.