Presentation is loading. Please wait.

Presentation is loading. Please wait.

Quality Control Chapter 5- Control Charts for Variables

Similar presentations


Presentation on theme: "Quality Control Chapter 5- Control Charts for Variables"— Presentation transcript:

1 Quality Control Chapter 5- Control Charts for Variables
PowerPoint presentation to accompany Besterfield Quality Control, 8e PowerPoints created by Rosida Coowar 1

2 Outline The Control Chart Techniques State of Introduction Control
Specifications Process Capability Six Sigma Different Control Charts 2

3 Learning Objectives When you have completed this chapter you should:
Know the three categories of variation and their sources. Understand the concept of the control chart method. Know the purpose of variable control charts. Know how to select the quality characteristics, the rational subgroup and the method of taking samples 3

4 Learning Objectives When you have completed this chapter you should:
Be able to calculate the central value, trial control limits and the revised control limits for Xbar and R chart. Be able to explain what is meant by a process in control and the various out-of-control patterns. Know the difference between individual measurements and averages; control limits and specifications. 4

5 Learning Objectives When you have completed this chapter you should:
Know the different situations between the process spread and specifications and what can be done to correct the undesirable situation. Be able to calculate process capability. Know the statistical meaning of 6σ 5

6 variation The variation concept is a law of nature in that no two natural items in any category are the same.

7 Variation The variation may be quite large and easily noticeable
The variation may be very small. It may appear that items are identical; however, precision instruments will show difference The ability to measure variation is necessary before it can be controlled

8 Variation Within-piece variation: Surface
There are three categories of variation in piece part production: Within-piece variation: Surface Piece-to-piece variation: Among pieces produced at the same time Time-to-time variation: Difference in product produced at different times of the day

9 Variation Sources of Variation in production processes: INPUTS PROCESS
Measurement Instruments Operators Methods Materials INPUTS PROCESS OUTPUTS Tools Human Inspection Performance Machines Environment

10 Variation Equipment: Toolwear Machine vibration
Sources of variation are: Equipment: Toolwear Machine vibration Electrical fluctuations etc. Material Tensile strength Ductility Thickness Porosity etc.

11 Variation Environment Temperature Light Radiation Humidity etc.
Sources of variation are: Environment Temperature Light Radiation Humidity etc. Operator Personal problem Physical problem etc.

12 Variation There is also a reported variation which is due to the inspection activity. Variation due to inspection should account for one tenth of the four other sources of variation.

13 Variation Variation may be due to chance causes (random causes) or assignable causes. When only chance causes are present, then the process is said to be in a state of statistical control. The process is stable and predictable.

14 Control Charts Variable data x-bar and R-charts x-bar and s-charts
Charts for individuals (x-charts) Attribute data For “defectives” (p-chart, np-chart) For “defects” (c-chart, u-chart)

15 Control Charts Continuous Numerical Data
Categorical or Discrete Numerical Data Control Charts Variables Attributes Charts Charts This slide simply introduces the various types of control charts. R X P C Chart Chart Chart Chart

16 Control Charts for Variables
The control chart for variables is a means of visualizing the variations that occur in the central tendency and the mean of a set of observations. It shows whether or not a process is in a stable state.

17 Figure 5-1 Example of a control chart
Control Charts Figure 5-1 Example of a control chart

18 Figure 5-1 Example of a method of reporting inspection results
Control Charts Figure 5-1 Example of a method of reporting inspection results

19 Variable Control Charts
The objectives of the variable control charts are: For quality improvement To determine the process capability For decisions regarding product specifications For current decisions on the production process For current decisions on recently produced items

20 Control Chart Techniques
Procedure for establishing a pair of control charts for the average Xbar and the range R: Select the quality characteristic Choose the rational subgroup Collect the data Determine the trial center line and control limits Establish the revised central line and control limits Achieve the objective

21 Quality Characteristic
The Quality characteristic must be measurable. It can expressed in terms of the seven basic units: Length Mass Time Electrical current Temperature Substance Luminosity as appropriate.

22 Rational Subgroup A rational subgroup is one in which the variation within a group is due only to chance causes. Within-subgroup variation is used to determine the control limits. Variation between subgroups is used to evaluate long-term stability.

23 Rational Subgroup There are two schemes for selecting the subgroup samples: Select subgroup samples from product or service produced at one instant of time or as close to that instant as possible Select from product or service produced over a period of time that is representative of all the products or services

24 Rational Subgroup The first scheme will have a minimum variation within a subgroup. The second scheme will have a minimum variation among subgroups. The first scheme is the most commonly used since it provides a particular time reference for determining assignable causes. The second scheme provides better overall results and will provide a more accurate picture of the quality.

25 Subgroup Size As the subgroup size increases, the control limits become closer to the central value, which make the control chart more sensitive to small variations in the process average As the subgroup size increases, the inspection cost per subgroup increases When destructive testing is used and the item is expensive, a small subgroup size is required

26 Subgroup Size From a statistical basis a distribution of subgroup averages are nearly normal for groups of 4 or more even when samples are taken from a non-normal distribution When a subgroup size of 10 or more is used, the s chart should be used instead of the R chart. See Table 5-1 for sample sizes

27 Data Collection Data collection can be accomplished using the type of figure shown in Figure 5-2. It can also be collected using the method in Table 5-2. It is necessary to collect a minimum of 25 subgroups of data. A run chart can be used to analyze the data in the development stage of a product or prior to a state of statistical control

28 Figure 5-4 Run Chart for data of Table 5-2

29 Trial Central Lines Central Lines are obtained using:

30 Trial Control Limits Trial control limits are established at ±3 standard deviations from the central value

31 Trial Control Limits In practice calculations are simplified by using the following equations where A2,D3 and D4 are factors that vary with the subgroupsize and are found in Table B of the Appendix.

32 Trial Control Limits Figure 5-5 Xbar and R chart for preliminary data with trial control limits

33 Revised Central Lines

34 Standard Values

35 Figure 5-6 Trial control limits and revised control limits for Xbar and R charts

36 Figure 5-7 Continuing use of control charts, showing improved quality
Achieve the Objective Figure 5-7 Continuing use of control charts, showing improved quality

37 Revised Central Lines

38 Sample Standard Deviation Control Chart
For subgroup sizes >=10, an s chart is more accurate than an R Chart. Trial control limits are given by:

39 Revised Limits for s chart

40 State of Control Process in Control
When special causes have been eliminated from the process to the extent that the points plotted on the control chart remain within the control limits, the process is in a state of control When a process is in control, there occurs a natural pattern of variation

41 Figure 5-9 Natural pattern of variation of a control chart
State of Control Figure 5-9 Natural pattern of variation of a control chart

42 State of Control Types of errors:
Type I, occurs when looking for a special cause of variation when in reality a common cause is present Type II, occurs when assuming that a common cause of variation is present when in reality there is a special cause

43 State of Control When the process is in control:
Individual units of the product or service will be more uniform Since the product is more uniform, fewer samples are needed to judge the quality The process capability or spread of the process is easily attained from 6ơ Trouble can be anticipated before it occurs

44 State of Control When the process is in control:
The % of product that falls within any pair of values is more predictable It allows the consumer to use the producer’s data It is an indication that the operator is performing satisfactorily

45 Common Causes Special Causes 45

46 State of Control Figure 5-11 Frequency Distribution of subgroup averages with control limits

47 State of Control When a point (subgroup value) falls outside its control limits, the process is out of control. Out of control means a change in the process due to a special cause. A process can also be considered out of control even when the points fall inside the 3ơ limits

48 State of Control It is not natural for seven or more consecutive points to be above or below the central line. Also when 10 out of 11 points or 12 out of 14 points are located on one side of the central line, it is unnatural. Six points in a row are steadily increasing or decreasing indicate an out of control situation

49 Out-of-Control Condition
Change or jump in level. Trend or steady change in level Recurring cycles Two populations (also called mixture) Mistakes

50 Patterns in Control Charts
This chart enables you to discuss some of the information which can be obtained from the Process Control Charts. Figure 5-12 Some unnatural runs-process out of control

51 Patterns in Control Charts
This chart enables you to discuss some of the information which can be obtained from the Process Control Charts. Figure 5-13 Simplified rule for out-of-control pattern

52 Out-of-Control Patterns
Change or jump in level Trend or steady change in level This chart enables you to discuss some of the information which can be obtained from the Process Control Charts. Recurring cycles Two populations

53 Specifications Figure 5-18 Comparison of individual values compared to averages

54 Specifications Calculations of the average for both the individual values and for the subgroup averages are the same. However the sample standard deviation is different.

55 Central Limit Theorem If the population from which samples are taken is not normal, the distribution of sample averages will tend toward normality provided that the sample size, n, is at least 4. This tendency gets better and better as the sample size gets larger. The standardized normal can be used for the distribution averages with the modification.

56 Figure 5-19 Illustration of central limit theorem

57 Figure 5-20 Dice illustration of central limit theorem

58 Control Limits & Specifications
Figure 5-21 Relationship of limits, specifications, and distributions

59 Control Limits & Specifications
The control limits are established as a function of the average Specifications are the permissible variation in the size of the part and are, therefore, for individual values The specifications or tolerance limits are established by design engineers to meet a particular function

60 Process Capability & Tolerance
The process spread will be referred to as the process capability and is equal to 6σ The difference between specifications is called the tolerance When the tolerance is established by the design engineer without regard to the spread of the process, undesirable situations can result

61 Process Capability & Tolerance
Three situations are possible: Case I: When the process capability is less than the tolerance 6σ<USL-LSL Case II: When the process capability is equal to the tolerance 6σ=USL-LSL Case III: When the process capability is greater than the tolerance 6σ >USL-LSL

62 Process Capability & Tolerance
Case I: When the process capability is less than the tolerance 6σ<USL-LSL Figure 5-24 Case I 6σ<USL-LSL

63 Process Capability & Tolerance
Case II: When the process capability is less than the tolerance 6σ=USL-LSL Figure 5-24 Case I 6σ=USL-LSL

64 Process Capability & Tolerance
Case III: When the process capability is less than the tolerance 6σ>USL-LSL Figure 5-24 Case I 6σ>USL-LSL

65 Process Capability The range over which the natural variation of a process occurs as determined by the system of common causes Measured by the proportion of output that can be produced within design specifications

66 Process Capability This following method of calculating the process capability assumes that the process is stable or in statistical control: Take 25 (g) subgroups of size 4 for a total of 100 measurements Calculate the range, R, for each subgroup Calculate the average range, RBar= ΣR/g Calculate the estimate of the population standard deviation Process capability will equal 6σ0

67 Process Capability The process capability can also be obtained by using the standard deviation: Take 25 (g) subgroups of size 4 for a total of 100 measurements Calculate the sample standard deviation, s, for each subgroup Calculate the average sample standard deviation, sbar = Σs/g Calculate the estimate of the population standard deviation Process capability will equal 6σo

68 Capability Index Process capability and tolerance are combined to form the capability index.

69 Capability Index The capability index does not measure process performance in terms of the nominal or target value. This measure is accomplished by Cpk.

70 Capability Index USL - LSL 6 ơo Cp = Cpk = min{ (USL- ¯X), (¯X-LSL)}
The Capability Index does not measure process performance in terms of the nominal or target Cpk = min{ (USL- ¯X), (¯X-LSL)}

71 Capability Index The Cp value does not change as the process center changes Cp=Cpk when the process is centered Cpk is always equal to or less than Cp A Cpk = 1 indicates that the process is producing product that conforms to specifications A Cpk < 1 indicates that the process is producing product that does not conform to specifications

72 Capability Index A Cp < 1 indicates that the process is not capable
A Cp=0 indicates the average is equal to one of the specification limits A negative Cpk value indicates that the average is outside the specifications

73 Cpk Measures Cpk = negative number Cpk = zero Cpk = between 0 and 1

74 Six Sigma Six Sigma is both a quality management philosophy and a methodology that focuses on reducing variation, measuring defects, and improving quality of products, processes and services.

75 Six Sigma Figure 5-27 Non-conformance rate when process is centered
Figure 5-28 Non-conformance rate when process is off center ±1.5σ

76 Different Control Charts
Charts for Better Operator Understanding: Placing individual values on the chart: This technique plots both the individual values and the subgroup average. Not recommended since it does not provide much information. Chart for subgroup sums: This technique plots the subgroup sum, ΣX, rather than the group average, Xbar.

77 Different Control Charts
Charts for Variable Subgroup Size: Used when the sample size is not the same Different control limits for each subgroup As n increases, limits become narrower As n decreases, limits become wider apart Difficult to interpret and explain To be avoided

78 Different Control Charts
Chart for Trends: Used when the plotted points have an upward or downward trend that can be attributed to an unnatural pattern of variation or a natural pattern such as tool wear. The central line is on a slope, therefore its equation must be determined.

79 Chart for Trends Use Least Square Calculations

80 Figure 5-32 Chart for Trend
Chart for Trends Figure 5-32 Chart for Trend

81 Chart for Moving Average and Moving Range
Value Xbar R 44 46 54 48.00 10 38 46.00 16 49 47.00 44.33 11 45 46.67 4 31 40.67 15 55 43.67 24 37 41.00 42 44.67 18 43 6 47 44.00 5 51 8 Used when we cannot have multiple observations per time period NOTE: n here is equal to 12, NOT 14 An example

82 Chart for Moving Average and Moving Range
Extreme readings have a greater effect than in conventional charts. An extreme value is used several times in the calculations, the number of times depends on the averaging period.

83 Chart for Median and Range
This is a simplified variable control chart. Minimizes calculations Easier to understand Can be easily maintained by operators Recommended to use a subgroup of 3, then all data is used.

84 Chart for Median and Range
For Table for A5, D5 and D6 see page 230

85 Chart for Individual values
Used when only one measurement is taken on quality characteristic Too expensive Time consuming Destructive Very few items

86 Chart for Individual Values
To use those equations, you have to use a moving range with n=2

87 Chart for Individual Values
Revised Limits: σo=0.8865Ro

88 Charts with Non-Acceptance Limits
Non-Acceptance limits have the same Relationship to averages as specifications have to individual values. Control Limits tell what the process is capable of doing, and reject limits tell when the product is conforming to specifications.

89 Charts with Non-Acceptance Limits
Figure 5-35 Relationship of non-acceptance limits, control limits and specifications.


Download ppt "Quality Control Chapter 5- Control Charts for Variables"

Similar presentations


Ads by Google