Download presentation
Presentation is loading. Please wait.
Published byAbel Reeves Modified over 9 years ago
1
4.1 Graphs of Sine and Cosine OBJ: Graph sine and cosine
2
1 DEF: Sine Graph 1 0ππ3π 2π -12 2 0 1 0 -1 0
3
1 DEF: Sine Graph 1 0ππ3π 2π -12 2 0 1 0 -1 0
4
y = d + a (trig b ( x + c) ) a (amplitude) multiply a times (0 |1 0 -1 0 1) b (period) 2π b c (starting point) d (vertical shift)
5
y = sin x Ref. no Amp. 1 Per. 2π ¼ Per. π/2 St. Pt. 0 Vert. Sh. none 0 1 0 1 0 1 0 -1 π/2 3π/2 4π/2
6
2 DEF: Cosine Graph 0ππ3π 2π 2 1 0 -1 0 1
7
2 DEF: Cosine Graph - π 0ππ3π 2π 22 2 1 0 -1 0 1
8
DEF: Periodic function A function f with the property f(x) = f(x+p) for every real number x in the domain of f and for some real positive number p. The smallest possible positive value of p is the period of the function f.
9
3 EX: Graph y = 2 sin x 0ππ3π 2π 2 0 1 0 -1 0 2(0 1 0 -1 0) 0 2 0 -2 0
10
3 EX: Graph y = 2 sin x 0ππ3π 2π 2 0 2 0 -2 0
11
DEF: Amplitude of Sine and Cosine The graph of y = a sin x or y = a cos x will have the same shape as y = sin x or y cos x, respectively, except with range - a y a . The number a is called the amplitude.
12
y = d + a(trig b ( x + c) ) a (amplitude) multiply a times (0 |1 0 -1 0 1) b (period) 2π b c (starting point) d (vertical shift)
13
4 y = -2 cos x 1 0 -1 0 1 -2(1 0 -1 0 1) -2 0 2 0 -2 2 1 0 -1 π/2 3π/2 4π/2 -2
14
4 y = -2 cos x Ref. yes Amp. - 2 Per. 2π ¼ Per. π/2 St. Pt. 0 Vert. Sh. none 1 0 -1 0 1 -2(1 0 -1 0 1) -2 0 2 0 -2 2 1 0 -1 π/2 3π/2 4π/2 -2
15
4 y = -2 cos x 2 1 0 -1 π/2 3π/2 4π/2 -2
16
DEF: Vertical Translation A function of the form y =d + a sin b x or of the form y = d + a cos b x is shifted vertically when compared with y = a sin b x or y =a cos b x.
17
y = d + a(trig b ( x + c) ) a (amplitude) multiply a times (0 |1 0 -1 0 1) b (period) 2π b c (starting point) d (vertical shift)
18
5 EX: Graph y = – 3 + 2 sin x 0ππ3π 2π 2
19
1 DEF: Sine Graph 1 0ππ3π 2π -12 2 0 1 0 -1 0
20
3 EX: Graph y = 2 sin x 0ππ3π 2π 2 2(0 1 0 -1 0) 0 2 0 -2 0
21
5 EX: Graph y = – 3 + 2 sin x 1 0ππ3π 2π -12 2 2(0 1 0 -1 0) 0 2 0 -2 0
22
5 EX: Graph y = – 3 + 2 sin x 1 0ππ3π 2π -12 2 2(0 1 0 -1 0) 0 2 0 -2 0 -3-3-3 -3 -3
23
5 EX: Graph y = – 3 + 2 sin x 1 0ππ3π 2π -12 2 -3 -1 -3 -5 -3
24
DEF: Phase Shift The function y = sin (x + c) has the shape of the basic sine graph y = sin x, but with a translation c units: to the right if c < 0 and to the left if c > 0. The number c is the phase shift of the graph. The cosine graph has the same function traits.
25
y = d + a(trig b (x + c) a (amplitude) multiply a times (0 |1 0 -1 0 1) b (period) 2π b c (starting point) d (vertical shift)
26
EX: Graph y = sin (x – π/3) 6 EX: Graph y = 4 – sin (x – π/3) 2 5 8 11 14 -1 6 6 6 6 6 0 1 0 -1 0
27
6 EX: Graph y = 4 – sin (x – π/3) 2 5 8 11 14 -1 6 6 6 6 6 0 1 0 -1 0 -1(0 1 0 -1 0 0 -1 0 1 0
28
6 EX: Graph y = 4 – sin (x – π/3) 2 5 8 11 14 -1 6 6 6 6 6 0 -1 0 1 0 +4 +4 +4 +4 +4 4 3 4 5 4
29
6 EX: Graph y = 4 – sin (x – π/3) 2 5 8 11 14 -1 6 6 6 6 6 4 3 4 5 4
30
EX: Graph y = 3cos (x + π/4) 7 EX: Graph y =-3 + 3cos(x+π/4)
31
- 3 5 7 4 4 4 4 4 1 0 -1 0 1
32
EX: Graph y = 3cos (x + π/4) 7 EX: Graph y =-3 + 3cos(x+π/4) - 3 5 7 4 4 4 4 4 1 0 -1 0 1 3(1 0 -1 0 1) 3 0 -3 0 3
33
7 EX: Graph y =-3 + 3cos(x+π/4) - 3 5 7 4 4 4 4 4 3 0 -3 0 3 -3 -3 -3 -3 -3 0 -3 -6 -3 0 __ __ __ __ __ __ __ __ __
34
7 EX: Graph y =-3 + 3cos(x+π/4) - 3 5 7 4 4 4 4 4 __ __ __ __ __ __ __ __ __
35
1 EX: Graph y = -2 +sin x Ref, Amp No, 1 Per 2 π ¼ Per 0ππ3π 2π π/2 2 2 St.Pt. 0 Vert. Shift 2
36
1 EX: Graph y = -2 +sin x 0ππ3π 2π 2 0 1 0 -1 0 -2 -2 -2 -2 -2 -2 -1 -2 -3 -2
37
1 EX: Graph y = -2 +sin x 0ππ3π 2π 2 0 1 0 -1 0 -2 -2 -2 -2 -2 -2 -1 -2 -3 -2
38
2 EX: Graph y = 3 – 2 cos x Ref, Amp Yes, -2 Per 2 π ¼ Per 0ππ3π 2π π/2 2 2 St.Pt. 0 Vert. Shift 3
39
2 EX: Graph y = 3 – 2 cos x 0ππ3π 2π 2 1 0 -1 0 1 -2(1 0 -1 0 1) -2 0 2 0 -2
40
2 EX: Graph y = 3 – 2 cos x 0ππ3π 2π -2(1 0 -1 0 1) 2 2 -2 0 2 0 -2 +3 +3 +3 +3 +3 1 3 5 3 1
41
2 EX: Graph y = 3 – 2 cos x 0ππ3π 2π -2(1 0 -1 0 1) 2 2 -2 0 2 0 -2 +3 +3 +3 +3 +3 1 3 5 3 1
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.