Download presentation
Presentation is loading. Please wait.
Published byDerick Hancock Modified over 9 years ago
1
Campaign data for parameterization tests: Examples from MAP‘99 VERTIKATOR’02, AWIATOR‘03 Hans Volkert, Thorsten Fehr, Christoph Kiemle, Oliver Reitebuch, Arnold Tafferner and Martin Weißmann DLR Oberpfaffenhofen, D Institut für Physik der Atmosphäre Evelyne Richard Laboratoire d‘Aérologie, CNRS & Université Paul Sabatier Toulouse, F
2
“Whenever possible, parameterizations should … be quantitatively validated against observations“ (Peixoto & Oort 1991) Textbook knowledge: High resolution … … simulation models need special data, e.g from dedicated field campaigns here:wind,boundary layer, precipitation microphysics Which variables and processes?
3
The campaigns MAP-SOP 1999Mesoscale Alpine Programme Special Observing Period „Weather and Alps“7 Sept. – 15 Nov 1999 cf.Bougeault et al. 2001, BAMS 82, 433–462 wind QJ, Jan. 2003 B (No. 588), 129, 341-895 VERTIKATOR-02Vertikaler Austausch, Trans- port und Orographie „Alpine Pumping“July 2002, north of the Alps wind & precipitation AWIATOR-03Wake Vortices at airports „Wake Vortex“Aug. 2003, north of Pyrénées wind
4
MAP-SOP 1999 IOP-15 8 Nov. north Föhn with waves
5
Rhone Aosta (model) orography ( x=1 km) 1.67–2.00 km aircraft triptych: B-A-C-D, 8 Nov. 1999
6
L North Föhn 8 Nov. 1999 ARPEGE ana. 12 UT 500 hPa: flow (max. 30 m/s) geopot. ( =40 gpm) model: Meso-NH with four nests (32, 8, 2, 0.5 km)
7
Drop-sounding: uniform wind direction ffddTrh dry moist
8
Three drop-sondes in 2mins.: reproducibility 130355 130455 130555
9
vertical velocity: trans-Alpine sections RhoneAostaRhoneValtellina obs + sim (--) F C E +2 -2 18 legs4 legs10 legs
10
vertical velocity: 2 & 1/2 km simulation 2 km ½ km RhoneValtellinaRhoneAosta F C E +2 -2
11
water vapour triptych: lidar-obs. vs. simulation 100 350 100 350 w (C130) mean diff. backs retrieval (s.p.=0.7) sim. obs. 100 ppmv 200
12
VERTIKATOR 2002 8, 9, 19 July Alpine pumping & generation of thunderstorms
13
10 µm-System WIND DLR/CNRS/CNES/Meteo-France vert. res. 250 m hor. res. 3 - 15 km accuracy 0.5 - 2 m/s 2 µm-System DLR/CTI-MAG1 100 m 3 - 10 km 0.2 - 2 m/s Airborne Doppler Lidar at DLR
14
Flight Track Falcon 8 July 2002 13:05 - 15:34 LT Data processing with averaging 3 scanner revolutions: 10 - 11 km
15
east-west gradient in speed (> 4 km) southwest northerly winds along the Alps up to 2.3 km WIND July 8, 2002, 14:10 - 14:27 LT Track Bodensee Chiemsee wind speed below 4 m/s (< 2.5 km)
16
MM5 by L. Gantner, Uni München WIND and MM5 on July 8, 2002 Track Bodensee Chiemsee WIND: top, 14:10 - 14:27 LT; MM5: bottom, 14:00 LT
17
19 July: 2 µm Lidar and vertical velocity
18
shallow medium steep 40 km 9 July: Bistatic Doppler and polarimetric radar
19
steepshallow medium 12 min later...
20
shallow medium steep
21
12:30 UT Meso-NH 2 km res. surf. wind, all hydromet., accum. precip. storm gene- ration @ Alps
22
13:00 UT Meso-NH 2 km res. surf. wind, all hydromet., accum. precip. storm gene- ration @ Alps
23
13:30 UT Meso-NH 2 km res. surf. wind, all hydromet., accum. precip. storm gene- ration @ Alps
24
14:00 UT Meso-NH 2 km res. surf. wind, all hydromet., accum. precip. storm gene- ration @ Alps
25
14:30 UT Meso-NH 2 km res. surf. wind, all hydromet., accum. precip. storm gene- ration @ Alps
26
15:00 UT Meso-NH 2 km res. surf. wind, all hydromet., accum. precip. storm gene- ration @ Alps
27
15:30 UT Meso-NH 2 km res. surf. wind, all hydromet., accum. precip. storm gene- ration @ Alps
28
16:00 UT Meso-NH 2 km res. surf. wind, all hydromet., accum. precip. storm gene- ration @ Alps
29
16:30 UT Meso-NH 2 km res. surf. wind, all hydromet., accum. precip. storm gene- ration @ Alps
30
17:00 UT Meso-NH 2 km res. surf. wind, all hydromet., accum. precip. storm gene- ration @ Alps
31
17:30 UT Meso-NH 2 km res. surf. wind, all hydromet., accum. precip. storm gene- ration @ Alps
32
18:00 UT Meso-NH 2 km res. surf. wind, all hydromet., accum. precip. storm gene- ration @ Alps
33
18:30 UT Meso-NH 2 km res. surf. wind, all hydromet., accum. precip. storm gene- ration @ Alps
34
19:00 UT Meso-NH 2 km res. surf. wind, all hydromet., accum. precip. storm gene- ration @ Alps
35
19:30 UT Meso-NH 2 km res. surf. wind, all hydromet., accum. precip. storm gene- ration @ Alps
36
20:00 UT Meso-NH 2 km res. surf. wind, all hydromet., accum. precip. storm gene- ration @ Alps
37
20:30 UT Meso-NH 2 km res. surf. wind, all hydromet., accum. precip. storm gene- ration @ Alps
38
21:00 UT Meso-NH 2 km res. surf. wind, all hydromet., accum. precip. storm gene- ration @ Alps
39
21:30 UT Meso-NH 2 km res. surf. wind, all hydromet., accum. precip. storm gene- ration @ Alps
40
AWIATOR 2003 27 August Diurnal cycle of surface profiles RASS vs. LM & MM5
41
Tarbes Airport Airport Tarbes Pau The Pyrenees LM forecast domain (DWD) MM5 forecast domain 0 2 4 6 8 10 12 14 16 18 m/s 2000 1800 1600 1400 1200 1000 800 600 400 LM MM5 Wake Predictor P2P MM5 vertical grid Modelling chain: LM–MM5–P2P
42
00 UT virt. temperaturewind speed
43
01 UT virt. temperaturewind speed
44
02 UT virt. temperaturewind speed
45
03 UT virt. temperaturewind speed
46
04 UT virt. temperaturewind speed
47
05 UT virt. temperaturewind speed
48
06 UT virt. temperaturewind speed
49
07 UT virt. temperaturewind speed
50
08 UT virt. temperaturewind speed
51
09 UT virt. temperaturewind speed
52
10 UT virt. temperaturewind speed
53
11 UT virt. temperaturewind speed
54
12 UT virt. temperaturewind speed
55
13 UT virt. temperaturewind speed
56
14 UT virt. temperaturewind speed
57
15 UT virt. temperaturewind speed
58
16 UT virt. temperaturewind speed
59
17 UT virt. temperaturewind speed
60
18 UT virt. temperaturewind speed
61
19 UT virt. temperaturewind speed
62
20 UT virt. temperaturewind speed
63
21 UT virt. temperaturewind speed
64
22 UT virt. temperaturewind speed
65
23 UT virt. temperaturewind speed
66
24 UT virt. temperaturewind speed
67
Concluding messages Potentially useful, non-standard data are available for parameterization test of high-resolution models; here: remotely sensed wind and precipitation A suitable number of case-studies may be more revealing than standard statistics Modelling and measuring camps have to come closer together DANKE for listening to me !!!
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.