Download presentation
Presentation is loading. Please wait.
Published byRoderick Peters Modified over 9 years ago
1
Physics Education in Canada Tetyana Antimirova and Pedro Goldman Tetyana Antimirova and Pedro Goldman Department of Physics, Department of Physics, Faculty of Engineering, Architecture and Science Ryerson University Ryerson University 2008 OAPT Conference 2008 OAPT Conference 22-24 May 2008 22-24 May 2008
2
Welcome to Ryerson!
3
Outline State of physics teaching State of physics teaching What is PER and PER subfields What is PER and PER subfields Challenges of PEP in Canada due to current funding model and our efforts to change it Challenges of PEP in Canada due to current funding model and our efforts to change it Latest Canadian PER initiatives Latest Canadian PER initiatives Physics Education at Ryerson Physics Education at Ryerson Looking into the future Looking into the future
4
Current State of Secondary Science Education in Canada: PISA 2006 Programme for International Student Assessment (PISA): 57 countries took part in the assessment. Canada came up 3 rd ! Only students from Finland and Hong-Kong, China outperformed Canadian students in science!
5
PISA2006 However, science performance is uneven among the Canadian provinces. Alberta is significantly better than any Canadian province, while Quebec, Ontario, and BC performed at the average level, and the rest of the provinces performed significantly below the Canadian average.
6
Challenges for Postsecondary Education Increasing expectations for student engagement and satisfaction Increasing expectations for student engagement and satisfaction Meeting the needs caused by changing demographics Meeting the needs caused by changing demographics
7
Changing Demographics More people than ever before pursue post-secondary education More people than ever before pursue post-secondary education Large Classes (100-200 students is a new norm, some classes are up to ~1500 students) Large Classes (100-200 students is a new norm, some classes are up to ~1500 students) In Ontario: younger population In Ontario: younger population Too many distractions Too many distractions Many students are forced to work while going to school Many students are forced to work while going to school
8
Trends The transition from high school to university is very painful for many students The transition from high school to university is very painful for many students Many programs/universities report low graduation rates Many programs/universities report low graduation rates The success or failure during the first year is a good predictor of student’s future at the university The success or failure during the first year is a good predictor of student’s future at the university Universities invest into lots of resources into first-year intervention to ease the transition (first-year offices, orientation courses, additional free tutoring, etc.) - but many of these measures are mostly subject non-specific Universities invest into lots of resources into first-year intervention to ease the transition (first-year offices, orientation courses, additional free tutoring, etc.) - but many of these measures are mostly subject non-specific Drastic differences between high school and university in study culture and expectations are not taken into account yet Drastic differences between high school and university in study culture and expectations are not taken into account yet
9
Ontario Statistics One out of 6 high school students takes grade 12 physics course One out of 6 high school students takes grade 12 physics course 95% of them pass the course 95% of them pass the course Overall, much lower success rate is reported in the University introductory physics courses Overall, much lower success rate is reported in the University introductory physics courses
10
University Introductory Physics Even by conservative estimates: Up to 30% of those who attempt introductory physics courses, drop these courses and take them later Up to 30% of those who attempt introductory physics courses, drop these courses and take them later Up to 25-30% students fail introductory physics courses in their first attempt Up to 25-30% students fail introductory physics courses in their first attempt “Minus 15% rule”- For those who pass, the grade is lower by 15% on average “Minus 15% rule”- For those who pass, the grade is lower by 15% on average
11
Adjusting to University First –Year Student Survey 2007 at Ryerson: First –Year Student Survey 2007 at Ryerson: A lower percentage of respondents (64% in 2007 compared to 78% in 2004), reported success with “performing adequately in courses requiring mathematical skills” A lower percentage of respondents (64% in 2007 compared to 78% in 2004), reported success with “performing adequately in courses requiring mathematical skills”
12
General Population According to various estimates, only between 0.5% and 2% of university population major in Physics According to various estimates, only between 0.5% and 2% of university population major in Physics Phobia of physics Phobia of physics The rest: The rest: Take required physics courses for engineering, pre- medical, other science programs or have no exposure to physics at all Take required physics courses for engineering, pre- medical, other science programs or have no exposure to physics at all
13
“The task of the physics teacher today is to figure out how to help a much larger fraction of the population understand how the world works, how to think logically, and how to evaluate science” Joe Redish Joe Redish
14
“Teaching physics can be both inspirational and frustrating” Joe Redish Joe Redish
15
What is Physics Education Research (PER)? PER Subfields Cognitive mechanism Cognitive mechanism Curriculum and instruction Curriculum and instruction Epistemology and attitudes Epistemology and attitudes Institutional change Institutional change Problem solving and reasoning Problem solving and reasoning Research methods Research methods Socio-cultural mechanisms Socio-cultural mechanisms Student conceptions Student conceptions Teacher education and TA training Teacher education and TA training Effective use of technology in teaching Effective use of technology in teaching
16
What Are We Concerned With? empirical investigations of student understanding empirical investigations of student understanding modeling student learning modeling student learning PER-based curricular materials (development, testing, evaluation, implementation) PER-based curricular materials (development, testing, evaluation, implementation) PER-based diagnostic instruments and assessments- our research tools PER-based diagnostic instruments and assessments- our research tools
17
Practicalities: A four-step, Scientific Approach to Teaching 1. Establish what students should learn 2. Scientifically measure what students are actually learning 3. Adapt instructional methods and curriculum and incorporate effective use of technology and pedagogical research to achieve desired learning outcomes 4. Share findings, disseminate and adopt what works Four-step approach from Carl Wieman Science Education Initiative (CWSEI) Four-step approach from Carl Wieman Science Education Initiative (CWSEI)
18
Tools: Using Technology in Science Teaching Interactive engagement in large lectures (Clickers) Interactive engagement in large lectures (Clickers) Using live data collection (sensors and probes, LoggerPro) to provide students with the opportunity to test their ideas about science Using live data collection (sensors and probes, LoggerPro) to provide students with the opportunity to test their ideas about science Using video-based motion analysis Using video-based motion analysis Using online computer simulations (PhET) in large lectures as well as in labs, tutorials and homework assignments Using online computer simulations (PhET) in large lectures as well as in labs, tutorials and homework assignments Using online interactive homework systems, such as MasteringPhysics Using online interactive homework systems, such as MasteringPhysics
19
Evaluating Impact: Action Research To know where we are going: Monitoring introduced changes Monitoring introduced changes Pre- and post-instruction testing Pre- and post-instruction testing Use of standardized conceptual tests for measuring the impact Use of standardized conceptual tests for measuring the impact
20
Science Education Research Groups in Canada
21
PER in Canada Unlike the USA, Europe, Australia and Latin America, there are only few Physics Education groups in Canada Unlike the USA, Europe, Australia and Latin America, there are only few Physics Education groups in Canada All PER initiatives in Canada happen despite the lack of PER funding on national and provincial levels All PER initiatives in Canada happen despite the lack of PER funding on national and provincial levels These initiatives are initiated by individuals, small groups and some universities These initiatives are initiated by individuals, small groups and some universities PER movement in Canada is building from the ground up! PER movement in Canada is building from the ground up!
22
Science Education Funding in Canada 22 NSERCSSHRCCIHR Sc. Ed.
23
Current State of Science Education Funding in Canada NSERC
24
Latest Development: Lobbying for Funding Model Change Lobbying for joint committees of major Canadian Lobbying for joint committees of major Canadian granting agencies (NCERS, SSHRC and CIHR) to review grant applications in subject-based Science Education Research Currently the signatures are being collected in the Currently the signatures are being collected in the support of the initiative of Dr. M.Milner-Bolotin and Dr. P.Walden.
25
Looking Into the Future Physics Education Research (as any subject-based science education research) requires consistent funding for research and curriculum development and evaluation, preferably from national granting agencies Physics Education Research (as any subject-based science education research) requires consistent funding for research and curriculum development and evaluation, preferably from national granting agencies Subject-based Science education research (PER in particular) should be centered at science departments Subject-based Science education research (PER in particular) should be centered at science departments Science (physics) departments should be involved in the training of science teachers Science (physics) departments should be involved in the training of science teachers
26
Despite Current Obstacles… A Few Canadian Post-Secondary Science Education Initiatives University of British Columbia: Carl Wieman Science Education Initiative (CWSEI) - $12 million over 5 years, started January 2006. Funded by the University. University of British Columbia: Carl Wieman Science Education Initiative (CWSEI) - $12 million over 5 years, started January 2006. Funded by the University. University of Toronto: Renovation of Undergraduate Physics Labs (studio-based physics teaching) - funded mainly by the University University of Toronto: Renovation of Undergraduate Physics Labs (studio-based physics teaching) - funded mainly by the University Alan Slavin’s work at Trent University on Students’ Achievements in Introductory Physics Courses Alan Slavin’s work at Trent University on Students’ Achievements in Introductory Physics Courses
27
A Few Canadian Post-Secondary Science Education Initiatives (continued) Ryerson University: Hired two tenure track physics education faculty at the Department of Physics; the scope of our PER- related activities is growing Ryerson University: Hired two tenure track physics education faculty at the Department of Physics; the scope of our PER- related activities is growing Perimeter Institute initiatives Perimeter Institute initiatives Toronto District School Board (TDSB) involvement with PER Toronto District School Board (TDSB) involvement with PER University of Calgary: Undergraduate Laboratory project funded by University, includes hiring postdoctoral researcher for PER-Latest development! University of Calgary: Undergraduate Laboratory project funded by University, includes hiring postdoctoral researcher for PER-Latest development!
28
Carl Wieman Science Education Initiative (CWSEI) University of British Columbia – Carl Wieman Science Education Initiative (CWSEI) University of British Columbia – Carl Wieman Science Education Initiative (CWSEI) $12 million over 5 years, started January 2006. Funded by the University. $12 million over 5 years, started January 2006. Funded by the University. Science Education in the 21st Century: Using the Tools of Science to Teach Science Science Education in the 21st Century: Using the Tools of Science to Teach Science Achieving the most effective, evidence-based science education Achieving the most effective, evidence-based science education
29
Undergraduate Physics Labs at University of Toronto Renovation of Undergraduate Physics Labs (studio- based physics teaching) Renovation of Undergraduate Physics Labs (studio- based physics teaching) 4.7 million 4.7 million State-of-the-art studio: both space and equipment State-of-the-art studio: both space and equipment Merging laboratory and tutorials, while preserving lectures Merging laboratory and tutorials, while preserving lectures Impact study Impact study
30
The Latest! Calgary Initiative Modernization of Undergraduate Physics Labs Modernization of Undergraduate Physics Labs Includes hiring a postdoctoral researcher to conduct PER Includes hiring a postdoctoral researcher to conduct PER 2-year project funded by the University 2-year project funded by the University Impact study Impact study
31
Ryerson Developments Ryerson University: Hired two tenure track physics education faculty at the Department of Physics (2004 and 2007) Ryerson University: Hired two tenure track physics education faculty at the Department of Physics (2004 and 2007) Two more faculty members are involved in PER on a part-time basis Two more faculty members are involved in PER on a part-time basis The scope of our PER-related activities is increasing steadily The scope of our PER-related activities is increasing steadily
32
TDSB Activities Conferences (for example, “Eureka” in November 2007) Conferences (for example, “Eureka” in November 2007) Growing collaboration with Universities Growing collaboration with Universities Involvement with OAPT, STAO Involvement with OAPT, STAO Involvement with physics teachers training Involvement with physics teachers training Teachers’ professional development Teachers’ professional development
33
Disclaimer This is rather a snapshot, not a comprehensive account of physics education in Canada This is rather a snapshot, not a comprehensive account of physics education in Canada Only relatively new developments and trends were mentioned Only relatively new developments and trends were mentioned We might be not aware of some of the initiatives taking place We might be not aware of some of the initiatives taking place If you happen to know the groups that we did not mention, we would like to hear about them! If you happen to know the groups that we did not mention, we would like to hear about them!
34
Physics Education @ Ryerson http://www.physics.ryerson.ca/ PROGRAMS: ● BSc in Medical Physics ● MSc in Biomedical Physics ● Applied to OCGS for PhD in Biomedical Physics ●Long-term goal: MSc in Science (Physics) Education
35
Our Faculty Our Faculty 15 faculty members (10 in Medical Physics, 2 in Physics Education) 15 faculty members (10 in Medical Physics, 2 in Physics Education) Largest university-based Biomedical Physics group in Ontario Largest university-based Biomedical Physics group in Ontario Physics Education is designated as our second area of expansion (2 full-time and 2 part-time faculty members) Physics Education is designated as our second area of expansion (2 full-time and 2 part-time faculty members) We believe that we are the only Physics Department in Canada which hired tenure- track faculty for PER We believe that we are the only Physics Department in Canada which hired tenure- track faculty for PER
36
We Teach… Introductory physics courses for over 800 students in Engineering Programs Introductory physics courses for over 800 students in Engineering Programs Introductory physics courses for over 300 students for Science Program (Medical Physics, Chemistry, Biology and Contemporary Science) Introductory physics courses for over 300 students for Science Program (Medical Physics, Chemistry, Biology and Contemporary Science) Our typical undergraduate physics classes have lecture section between 100 and 200 students Our typical undergraduate physics classes have lecture section between 100 and 200 students
37
We Teach (continued)… Advanced physics courses for our own undergraduate BSc program in Medical Physics Advanced physics courses for our own undergraduate BSc program in Medical Physics Graduate courses for our graduate MSc program in Biomedical Physics Graduate courses for our graduate MSc program in Biomedical Physics Several elective courses for Liberal Arts Program (including very popular Astronomy course) Several elective courses for Liberal Arts Program (including very popular Astronomy course) Innovative Course for Architectural Science Program (new!) Innovative Course for Architectural Science Program (new!)
38
Bachelor of Science in Medical Physics at Ryerson University A new Bachelor of Science in Medical Physics program at Ryerson University, Toronto, Ontario was launched in Fall 2006 (first intake of second-year students). A new Bachelor of Science in Medical Physics program at Ryerson University, Toronto, Ontario was launched in Fall 2006 (first intake of second-year students). Small at first, but very strong group of students will graduate after Winter 2009 Small at first, but very strong group of students will graduate after Winter 2009
39
Bachelor of Science in Medical Physics Program at Ryerson University Beyond first year courses include such topics as radiation therapy, image analysis, medical diagnostics and computer modeling techniques. Beyond first year courses include such topics as radiation therapy, image analysis, medical diagnostics and computer modeling techniques. In the final year the students undertake an independent, faculty-supervised thesis project in an area of personal research interest. In the final year the students undertake an independent, faculty-supervised thesis project in an area of personal research interest.
40
Our Graduate Programs Master of Science in Biomedical Physics launched in Fall 2006 Master of Science in Biomedical Physics launched in Fall 2006 Our own MSc. Students will graduate this summer Our own MSc. Students will graduate this summer Application for PhD program in Biomedical Physics is submitted to OCGS Application for PhD program in Biomedical Physics is submitted to OCGS Tentative plans for Master’s Program in Science Education (starting with Physics Education) fit well with the University’s Academic plan Tentative plans for Master’s Program in Science Education (starting with Physics Education) fit well with the University’s Academic plan
41
Our PER-Related Activities Common theme: the impact of new technologies on students learning: Clickers Clickers Probe/sensor technologies for real-time data acquisition, Logger Pro Probe/sensor technologies for real-time data acquisition, Logger Pro Interactive computer simulations (PhET) Interactive computer simulations (PhET) On-line tutoring/homework systems (Mastering Physics) On-line tutoring/homework systems (Mastering Physics) Video-based motion analysis Video-based motion analysis Our Goal: to implement activity-based, inquiry based learning in all our courses Our Goal: to implement activity-based, inquiry based learning in all our courses
42
Personal Response Systems Our Department was instrumental in University-wide adoption of eInstruction clickers in Fall 2007 Our Department was instrumental in University-wide adoption of eInstruction clickers in Fall 2007 Members of our Department piloted clickers in several Physics courses for Science program students in 2005- 2006 Members of our Department piloted clickers in several Physics courses for Science program students in 2005- 2006 Currently clickers are used in several large enrollment physics courses for Sciences and Engineering programs Currently clickers are used in several large enrollment physics courses for Sciences and Engineering programs
43
Our Ongoing PER Activities Plans for total undergraduate lab renovations (we are still in a fundraising stage) Plans for total undergraduate lab renovations (we are still in a fundraising stage) Implementation of video-analysis assignments (in progress) Implementation of video-analysis assignments (in progress) Action research in our introductory Physics course for Science programs (pre- and post- testing) Action research in our introductory Physics course for Science programs (pre- and post- testing)
44
High School Physics Courses Experience and Learning Outcomes in University Introductory Physics Courses The common introductory physics course for all Science Programs (~300 students) at Ryerson combines the students who took Ontario grade 12 high school physics or its equivalent, and those who did not The common introductory physics course for all Science Programs (~300 students) at Ryerson combines the students who took Ontario grade 12 high school physics or its equivalent, and those who did not This natural split allowed us to probe how the previous exposure to high school physics influences the learning outcomes in the university introductory physics courses This natural split allowed us to probe how the previous exposure to high school physics influences the learning outcomes in the university introductory physics courses
45
Science Programs Class at Ryerson 60% took grade 12 physics course or equivalent 60% took grade 12 physics course or equivalent 40% did not 40% did not We teach them in one class We teach them in one class
46
FALL 2007: Did you take high school physics? 1. YES 2. NO (self-identified)
47
Our Conclusions Although there are huge variations in individual performance, statistically, the knowledge gap between the two groups (with and without high school physics background) does not shrink after the instruction. Although there are huge variations in individual performance, statistically, the knowledge gap between the two groups (with and without high school physics background) does not shrink after the instruction. Course dropout rates are significantly higher among the students who did not take grade12 physics or equivalent Course dropout rates are significantly higher among the students who did not take grade12 physics or equivalent The high school exposure to sciences does matter! The high school exposure to sciences does matter! We must communicate this information to the students, parents, teachers and high school counselors We must communicate this information to the students, parents, teachers and high school counselors
48
Pilot study Impact of Student Major on their Achievement in Introductory Physics Implement pre- and post testing (FCI, FMCE) Implement pre- and post testing (FCI, FMCE) Implement Attitude Towards Science surveys Implement Attitude Towards Science surveys
49
Experiential Learning Dr. Marina Milner-Bolotin developed innovative course (PCS107) for first-year students Architectural and Building Science Program Dr. Marina Milner-Bolotin developed innovative course (PCS107) for first-year students Architectural and Building Science Program Dr. Carl Kumaradas will introduce project-based small-group learning in our second-year Dr. Carl Kumaradas will introduce project-based small-group learning in our second-year Introduction to Medical Physics course Introduction to Medical Physics course
50
High School-University Transition Why to collaborate? Postsecondary and secondary education have similar goals: to provide successful student-centered teaching and learning Postsecondary and secondary education have similar goals: to provide successful student-centered teaching and learning Face somewhat similar challenges Face somewhat similar challenges Both systems can benefit from sharing experiences and exchanging ideas Both systems can benefit from sharing experiences and exchanging ideas Help our students with smooth transition from high school to university Help our students with smooth transition from high school to university
51
Mutual University-High School Visits In Fall 2007 David Doucette visited my PCS120 first year class for students enrolled in Sciences Programs In Fall 2007 David Doucette visited my PCS120 first year class for students enrolled in Sciences Programs I visited grade 11, grade 12 and advanced placement physics classes in David’s high school in Richmond Hills. I visited grade 11, grade 12 and advanced placement physics classes in David’s high school in Richmond Hills. University instructors can learn a lot from high school teachers: group work, inquiry- based teaching and student-centered approach University instructors can learn a lot from high school teachers: group work, inquiry- based teaching and student-centered approach
52
What We Can Offer To send our Faculty to your class to talk about Medical Physics and Biophysics To send our Faculty to your class to talk about Medical Physics and Biophysics To invite your high school classes for a site visit at Ryerson To invite your high school classes for a site visit at Ryerson Once we get new teaching labs we will be able to provide workshops for teachers if needed Once we get new teaching labs we will be able to provide workshops for teachers if needed
53
Looking Into the Future PER movement is gaining momentum at all levels of educational system PER movement is gaining momentum at all levels of educational system We hope there will be even more opportunities if the funding model problem gets solved We hope there will be even more opportunities if the funding model problem gets solved The community of educators is ready for a change, but the institutional support is needed for consistent and sustainable changes The community of educators is ready for a change, but the institutional support is needed for consistent and sustainable changes
54
Resources 1. Antimirova, T., M. Milner-Bolotin, et al. "Physics Education on the Move in Canada" Newsletter of the International Consortium on Physics Education (ICPE), Spring 2008. 2. Milner-Bolotin, M. and T. Antimirova (2007). "Physics Education in Canada: Recent developments." Canadian Undergraduate Physics Journal VI(1): 28-29.
55
IF YOU HAVE ANY QUESTIONS… SUGGESTIONS… IDEAS… Please feel free to contact us: Phone: (416) 9795000 x 17416 Email: antimiro@ryerson.ca Tetyana Antimirova Assistant Professor Assistant Chair for the Undergraduate Studies Department of Physics Ryerson University Phone: (416) 9795000 x 16538 Email: goldman@ryerson.ca Pedro Goldman Professor and Chair Department of Physics Ryerson University
56
We would like to thank Marina Milner-Bolotin for providing some materials for this presentation.
57
Thank you!
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.