Download presentation
Published byAlan Wright Modified over 9 years ago
1
Chapter 8 Electron Configuration and Chemical Periodicity
2
Electron Configuration and Chemical Periodicity
8.1 Development of the Periodic Table 8.2 Characteristics of Many-Electron Atoms 8.3 The Quantum-Mechanical Model and the Periodic Table 8.4 Trends in Some Key Periodic Atomic Properties 8.5 The Connection Between Atomic Structure and Chemical Reactivity
3
Mendeleev’s Predicted Properties of Germanium (“eka Silicon”) and Its Actual Properties
Table 8.1 Predicted Properties of eka Silicon(E) Actual Properties of Germanium (Ge) Property atomic mass 72 amu 72.61 amu appearance gray metal gray metal density 5.5 g/cm3 5.32 g/cm3 molar volume 13 cm3/mol 13.65 cm3/mol specific heat capacity 0.31 J/g.K 0.32 J/g.K oxide formula EO2 GeO2 oxide density 4.7 g/cm3 4.23 g/cm3 sulfide formula and solubility ES2; insoluble in H2O; soluble in aqueous (NH4)2S GeS2; insoluble in H2O; soluble in aqueous (NH4)2S chloride formula (boiling point) ECl4; (< 100 oC) GeCl4; (84 oC) chloride density 1.9 g/cm3 1.844 g/cm3 element preparation reduction of K2EF6 with sodium reduction of K2GeF6 with sodium
4
Observing the Effect of Electron Spin
Figure 8.1
5
Table 8.2 Summary of Quantum Numbers of Electrons in Atoms
Name Symbol Allowed Values Property principal n positive integers (1, 2, 3,…) orbital energy (size) angular momentum l integers from 0 to n-1 orbital shape (l values of 0, 1, 2 and 3 correspond to s, p, d and f orbitals, respectively.) magnetic ml integers from -l to 0 to +l orbital orientation spin ms +1/2 or -1/2 direction of e- spin Each electron in an atom has its own unique set of four (4) quantum numbers.
6
No two electrons in the same atom can have
The Pauli Exclusion Principle No two electrons in the same atom can have the same four quantum numbers An atomic orbital can hold a maximum of two electrons and they must have opposite spins (paired spins)
7
Spectral evidence of energy-level splitting in many-electron systems
Figure 8.2 Many-electron atoms: have nucleus-electron and electron-electron interactions Leads to the splitting of energy levels into sublevels of differing energies: the energy of an orbital depends mostly on its n value (size) and somewhat on its l value (shape)
8
Factors Affecting Atomic Orbital Energies
Effect of nuclear charge (Zeffective) Higher nuclear charge lowers orbital energy (stabilizes the system) by increasing nucleus-electron attractions. Effect of electron repulsions (shielding) 1. Additional electron in the same orbital An additional electron raises the orbital energy through electron-electron repulsions. 2. Additional electrons in inner orbitals Inner electrons shield outer electrons more effectively than do electrons in the same sublevel.
9
The effect of nuclear charge Greater nuclear charge lowers orbital energy Figure 8.3
10
The effect of another electron in the same orbital
Each electron shields the other from the full nuclear charge, thus raising orbital energy Figure 8.4
11
The effect of other electrons in inner orbitals
Inner electrons shield outer electrons very well and raise orbital energy greatly Figure 8.5
12
The effect of orbital shape
Figure 8.6 2s electron farther from nucleus than 2p electron, but penetrates near nucleus; increased attraction results in lower orbital energy
13
General Rule for Predicting Relative Sublevel Energies
For a given n value, the lower the l value, the lower the sublevel energy; thus…. s < p < d < f
14
Order for filling energy sublevels with electrons
Figure 8.7 Order for filling energy sublevels with electrons Illustrating Orbital Occupancies A. The electron configuration # of electrons in the sublevel n l as s, p, d or f B. The orbital diagram (box or circle)
15
A vertical orbital diagram for the Li ground state
no color = empty light = half-filled Sublevel energy increases from bottom to top 1s22s1 dark = filled, spin-paired Figure 8.8
16
Hund’s Rule When orbitals of equal energy are available, the electron
configuration of lowest energy has the maximum number of unpaired electrons with parallel spins.
17
Determining Quantum Numbers from Orbital Diagrams Sample Problem 8.1
Write a set of quantum numbers for the third electron and a set for the eighth electron of the fluorine (F) atom. PLAN: Use the orbital diagram to find the third and eighth electrons. 9F 1s 2s 2p Up arrow = +1/2 Down arrow = -1/2 SOLUTION: The third electron is in the 2s orbital. Its quantum numbers are: n = l = ml = ms= 2 +1/2 The eighth electron is in a 2p orbital. Its quantum numbers are: n = l = ml = ms= 2 1 -1 -1/2
18
Orbital occupancy for the first 10 elements, H through Ne
Figure 8.9 He and Ne have filled outer shells: confers chemical inertness
20
Condensed ground-state electron configurations in the first three periods
Figure 8.10 Similar outer electron configurations correlate with similar chemical behavior.
21
Similar Reactivities within
A Group Orbitals are filled in order of increasing energy, which leads to outer electron configurations that recur periodically, which leads to chemical properties that recur periodically. Figure 8.11
22
Cr and Cu: Half-filled and filled sublevels are unexpectedly stable!
24
A periodic table of partial ground-state electron configurations
Figure 8.12
25
The relation between orbital filling and the Periodic Table
Figure 8.13
26
Common tool used to predict the filling order Of sublevels n values are constant horizontally l values are constant vertically combined values of n+1 are constant diagonally p. 302
27
Categories of Electrons
Inner (core) electrons: fill all the lower energy levels of an atom Outer electrons: those electrons in the highest energy level (highest n value) of an atom Valence electrons: those involved in forming compounds; the bonding electrons; among the main-group elements, the valence electrons are the outer electrons
28
General Observations about the Periodic Table
A. The group number equals the number of outer electrons (those with the highest value of n) (main-group elements only) B. The period number is the n value of the highest energy level. C. The n value squared (n2) gives the total number of orbitals in that energy level; 2n2 gives the maximum number of electrons in the energy level.
29
SAMPLE PROBLEM 8.2 Determining Electron Configuration PROBLEM: Using the periodic table, give the full and condensed electron configurations, partial orbital diagrams showing valence electrons, and number of inner electrons for the following elements: (a) potassium (K: Z = 19) (b) molybdenum (Mo: Z = 42) (c) lead (Pb: Z = 82) PLAN: Use the atomic number for the number of electrons and the periodic table for the order of filling of the electron orbitals. Condensed configurations consist of the preceding noble gas plus the outer electrons. SOLUTION: (a) for K (Z = 19) condensed configuration: partial orbital diagram: full configuration: 1s22s22p63s23p64s1 [Ar] 4s1 K has 18 inner electrons. 4s1
30
SAMPLE PROBLEM 8.2: (continued) (b) for Mo (Z = 42) condensed configuration: partial orbital diagram: full configuration: 1s22s22p63s23p64s23d104p65s14d5 [Kr] 5s14d5 Mo has 36 inner electrons and 6 valence electrons. 5s1 4d5 (c) for Pb (Z = 82) 1s22s22p63s23p64s23d104p65s24d105p66s24f145d106p2 condensed configuration: partial orbital diagram: full configuration: [Xe] 6s24f145d106p2 Pb has 78 inner electrons and 4 valence electrons. 6s2 6p2
31
KEY PRINCIPLE All physical and chemical properties of the elements
are based on the electronic configurations of their atoms.
32
Defining metallic and covalent radii
A. Metallic radius: 1/2 the distance between adjacent nuclei in a crystal B. Covalent radius: 1/2 the distance between bonded nuclei in a molecule Figure 8.14
33
Atomic radii of main-group and transition elements
Opposing forces: Changes in n and changes in Zeff Overall Trends (A) n dominates within a group; atomic radius generally increases in a group from top to bottom (B) Zeff dominates within a period; atomic radius generally decreases in a period from left to right Figure 8.15
34
Periodicity of atomic radius
Large size shifts when moving from one period to the next Figure 8.16
35
SAMPLE PROBLEM 8.3 Ranking Elements by Atomic Size PROBLEM: Using only the periodic table, rank each set of main group elements in order of decreasing atomic size. (a) Ca, Mg, Sr (b) K, Ga, Ca (c) Br, Rb, Kr (d) Sr, Ca, Rb PLAN: Size increases down a group; size decreases across a period. SOLUTION: (a) Sr > Ca > Mg These elements are in Group 2A. (b) K > Ca > Ga These elements are in Period 4. (c) Rb > Br > Kr Rb has a higher energy level and is far to the left. Br is to the left of Kr. (d) Rb > Sr > Ca Ca is one energy level smaller than Rb and Sr. Rb is to the left of Sr.
36
Ionization Energy The amount of energy required for the complete removal of 1 mol of electrons from 1 mol of gaseous atoms or ions; an energy- requiring process; value is positive in sign IE1 = first ionization energy: removes an outermost electron from the gaseous atom: atom(g) ion+(g) + e ∆E = IE1 > 0 IE2 = second ionization energy: removes a second electron from the gaseous ion: ion+(g) ion+2(g) + e ∆E = IE2 > IE1 Atoms with a low IE1 tend to form cations during reactions, whereas those with a high IE1 (except noble gases) often form anions.
37
Ionization Energies: Correlations with Atomic Size
1. As size decreases, it take more energy to remove an electron. 2. Ionization energy generally decreases down a group. 3. Ionization generally increases across a period.
38
Periodicity of first ionization energy (IE1)
Figure 8.17 Lowest values for alkali metals; highest values for noble gases
39
First ionization energies of the main-group elements
Increase within a period and decrease within a group Figure 8.18
40
SAMPLE PROBLEM 8.4 Ranking Elements by First Ionization Energy PROBLEM: Using the periodic table, rank the elements in each of the following sets in order of decreasing IE1: (a) Kr, He, Ar (b) Sb, Te, Sn (c) K, Ca, Rb (d) I, Xe, Cs PLAN: IE decreases down in a group; IE increases across a period. SOLUTION: (a) He > Ar > Kr Group 8A elements- IE decreases down a group. (b) Te > Sb > Sn Period 5 elements - IE increases across a period. (c) Ca > K > Rb Ca is to the right of K; Rb is below K. (d) Xe > I > Cs I is to the left of Xe; Cs is further to the left and down one period.
41
The first three ionization energies of beryllium (in MJ/mol)
Successive IEs increase, but a large increase is observed to remove the first core electron (for Be, IE3) Figure 8.19
43
SAMPLE PROBLEM 8.5 Identifying an Element from Successive Ionization Energies PROBLEM: Name the Period 3 element with the following ionization energies (in kJ/mol) and write its electron configuration: IE1 IE2 IE3 IE4 IE5 IE6 1012 1903 2910 4956 6278 22,230 PLAN: Look for a large increase in energy that indicates that all of the valence electrons have been removed. SOLUTION: The largest increase occurs at IE6, that is, after the 5th valence electron has been removed. The element must have five valence electrons with a valence configuration of 3s23p3, The element must be phosphorus. P (Z = 15). The complete electronic configuration is: 1s22s22p63s23p3.
44
Electron Affinity (EA)
The energy change accompanying the addition of 1 mol of electrons to 1 mol of gaseous atoms or ions. atom(g) + e ion-(g) ∆E = EA1 (usually negative) EA2 is always positive (adding negative charge to negatively charged ion).
45
Electron affinities of the main-group elements
Negative values = energy is released when the ion forms Positive values = energy is absorbed to form the anion Figure 8.20
46
General Trends Involving IEs and EAs
Reactive non-metals: Groups 6A and 7A; in their ionic compounds they form negative ions (have high IEs and very (-) EAs) Reactive metals: Group 1A; in their ionic compounds, they form positive ions (have low IEs and slightly (-) EAs) Noble gases: Group 8A; they do not lose or gain electrons (have very high IEs and slightly (+) EAs)
47
Trends in three atomic properties
Figure 8.21
48
Metallic Behavior Metals: shiny solids; tend to lose electrons in reactions with non-metals (left and lower 3/4 of periodic table) Non-metals: tend to gain electrons in reactions with metals; upper right-hand quarter of periodic table Metalloids: have intermediate properties; located between the metals and non-metals in the periodic table Metallic behavior decreases left to right and increases top to bottom in the periodic table
49
Trends in metallic behavior
Figure 8.22
50
Moving down a GROUP: elements at the top tend to form
anions and those at the bottom tend to form cations Moving across a PERIOD: elements at the left tend to form cations and those at the right lend to form anions
51
The change in metallic behavior in Group 5A(15) and Period 3
Figure 8.23
52
Acid-Base Properties Main-group metals: transfer electrons to oxygen; their oxides are ionic; in water these oxides act as bases (produce OH-) Nonmetals: share electrons with oxygen; their oxides are covalent; in water these oxides act as acids (produce H+) Some metals and many metalloids form oxides that are amphoteric (can act as an acid or a base in water).
53
The trend in acid-base behavior of element oxides
Figure 8.24 red = oxides are acidic blue = oxides are basic
54
Examples Na2O(s) + H2O(l) 2NaOH(aq) N2O5(s) + H2O(l) 2HNO3(aq)
P4O10(s) + 6H2O(l) H3PO4(aq) Bi2O3(s) + 6HNO3(aq) Bi(NO3)3(aq) + 3H2O(l) Amphoteric Behavior Al2O3(s) + 6HCl(aq) AlCl3(aq) + 3H2O(l) Al2O3(s) + 2NaOH(aq) + 3H2O(l) NaAl(OH)4(aq)
55
Monatomic Ions Main Group
Elements in Groups 1A, 2A, 6A and 7A that readily form ions either lose or gain electrons to attain a filled outer level and thus a noble gas configuration. Their ions are said to be isoelectronic with the nearest noble gas. Elements in Groups 3A, 4A and 5A form cations via a different process; they attain pseudo-noble gas configurations. Sn ([Kr]5s24d105p2) Sn+4 ([Kr]4d10) e- Sn ([Kr]5s24d105p2) Sn+2 ([Kr]5s24d10) e-
56
Main-group ions and the noble gas configurations
Figure 8.25
57
SAMPLE PROBLEM 8.6 Writing Electron Configurations of Main-Group Ions PROBLEM: Using condensed electron configurations, write reactions for the formation of the common ions of the following elements: (a) iodine (Z = 53) (b) potassium (Z = 19) (c) indium (Z = 49) PLAN: Ions of elements in Groups 1A, 2A, 6A and 7A are usually isoelectronic with the nearest noble gas. Metals in Groups 3A to 5A can lose the np, or ns and np, electrons. SOLUTION: (a) Iodine (Z = 53) is in Group 7A and will gain one e- to be isoelectronic with Xe: I([Kr]5s24d105p5) + e I- ([Kr]5s24d105p6) (b) Potassium (Z = 19) is in Group 1A and will lose one e- to be isoelectronic with Ar: K ([Ar]4s1) K+ ([Ar]) + e- (c) Indium (Z = 49) is in Group 3A(13) and can lose either one electron or three electrons: In ([Kr]5s24d105p1) In+ ([Kr]5s24d10) + e- In ([Kr]5s24d105p1) In3+([Kr]4d10) e-
58
Monatomic Ions Transition Metal Ions
Rarely attain a noble gas configuration Form more than one cation by losing all of their ns and some of their (n-1)d electrons For Period 4 transition metals, the 4s orbital is more stable that the 3d orbitals; thus the rule “first in, first out” applies.
59
The Period 4 crossover in sublevel energies
Figure 8.26
60
General Rules For Ion Formation
Main group, s-block metals: remove all electrons with highest n value Main group, p-block metals: remove np electrons before ns electrons Transition (d-block) metals: remove ns electrons before (n-1)d electrons Non-metals: add electrons to the p orbital of highest n value
61
Magnetic Properties of Transition Metal Ions
Chemical species (atoms, ions, molecules) with one or more unpaired electrons are affected by external magnetic fields. Ag (Z=47) [Kr]5s14d10 Cd (Z=48) [Kr]5s24d10 Species with unpaired electrons exhibit paramagnetism (attracted by an external magnetic field). Species with all electrons paired exhibit diamagnetism (not attracted by an external magnetic field).
62
Apparatus for measuring the magnetic behavior of a sample
Figure 8.27
63
Some Examples Fe+3 exhibits greater paramagnetism than Fe.
Fe ([Ar]4s23d6) Fe+3 ([Ar]3d5) + 3e- Zn, Zn+2 and Cu+ are diamagnetic, but Cu is paramagnetic. Cu ([Ar]4s13d10) Cu+ ([Ar]3d10) e- Zn ([Ar]4s23d10) Zn+2 ([Ar]3d10) e-
64
Writing Electron Configurations and Predicting Magnetic Behavior of Transition Metal Ions
SAMPLE PROBLEM 8.7 PROBLEM: Use condensed electron configurations, write the reaction for the formation of each transition metal ion and predict whether the ion is paramagnetic. (a) Mn2+(Z = 25) (b) Cr3+(Z = 24) (c) Hg2+(Z = 80) PLAN: Write the electron configuration and remove electrons starting with the ns electrons to attain the ion charge. If the remaining configuration has unpaired electrons, the ion is paramagnetic. SOLUTION: (a) Mn2+(Z = 25) Mn([Ar]4s23d5) Mn2+([Ar]3d5) + 2e- paramagnetic (b) Cr3+(Z = 24) Cr([Ar]4s13d5) Cr3+([Ar] 3d3) e- paramagnetic (c) Hg2+(Z = 80) Hg([Xe]6s24f145d10) Hg2+([Xe] 4f145d10) e- not paramagnetic (is diamagnetic)
65
Ionic Size vs Atomic Size
Ionic radius: an estimate of the size of an ion in a crystalline ionic compound General Observations Cations are smaller than their parent atoms (decrease in electron-electron repulsions). Anions are larger than their parent atoms (increase in electron-electron
66
Depicting ionic radii Figure 8.28
67
Ionic vs atomic radius Ionic size increases down a group
Trends in periods are complex For atoms that form more than one cation: the greater the ionic charge, the smaller the ionic radius Figure 8.29
68
Summary on Ionic Size Ionic size increases down a group.
Ionic size decreases across a period but increases from cation to anion. Ionic size decreases with increasing (+) (or decreasing (-)) charge in an isoelectronic series Ionic size decreases as charge increases for different cations of a given element
69
SAMPLE PROBLEM 8.8 Ranking Ions by Size PROBLEM: Rank each set of ions in order of decreasing size, and explain your ranking: (a) Ca2+, Sr2+, Mg2+ (b) K+, S2-, Cl- (c) Au+, Au3+ PLAN: Compare positions in the periodic table, formation of positive and negative ions and changes in size due to gain or loss of electrons. SOLUTION: These are members of the same Group (2A) and therefore decrease in size going up the group. (a) Sr2+ > Ca2+ > Mg2+ These ions are isoelectronic; S2- has the smallest Zeff and therefore is the largest while K+ is a cation with a large Zeff and is the smallest. (b) S2- > Cl- > K+ (c) Au+ > Au3+ The higher the positive charge, the smaller the ion.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.