Download presentation
Presentation is loading. Please wait.
Published byDarcy Solomon McLaughlin Modified over 9 years ago
1
DES DHE Electronics Chassis --- Vaidas Simaitis vjs@uiuc.edu 1 DHE Chassis and Cooling DES Mechanical Workshop at FNAL November 2, 2005 Vaidas Simaitis High Energy Physics Group University of Illinois at Urbana-Champaign
2
DES DHE Electronics Chassis --- Vaidas Simaitis vjs@uiuc.edu 2 6-SLOT + 4-SLOT CHASSIS
3
DES DHE Electronics Chassis --- Vaidas Simaitis vjs@uiuc.edu 3 FAN MANIFOLDS ADDED
4
DES DHE Electronics Chassis --- Vaidas Simaitis vjs@uiuc.edu 4 FANS ADDED
5
DES DHE Electronics Chassis --- Vaidas Simaitis vjs@uiuc.edu 5 COOLING MANIFOLDS ADDED
6
DES DHE Electronics Chassis --- Vaidas Simaitis vjs@uiuc.edu 6 HEAD EXCHANGERS ADDED
7
DES DHE Electronics Chassis --- Vaidas Simaitis vjs@uiuc.edu 7 MAIN MANIFOLDS ADDED WITH HEAT SINK FOR THERMOELECTRIC COOLER
8
DES DHE Electronics Chassis --- Vaidas Simaitis vjs@uiuc.edu 8 POWER SUPPLIES ADDED
9
DES DHE Electronics Chassis --- Vaidas Simaitis vjs@uiuc.edu 9 POWER SUPPLY MANIFOLDS ADDED
10
DES DHE Electronics Chassis --- Vaidas Simaitis vjs@uiuc.edu 10 DELRIN MOUNTING INSULATORS
11
DES DHE Electronics Chassis --- Vaidas Simaitis vjs@uiuc.edu 11 MOUNTED TO INNER CYLINDER (1/4 SHOWN)
12
DES DHE Electronics Chassis --- Vaidas Simaitis vjs@uiuc.edu 12 CONNECTOR BULKHEAD
13
DES DHE Electronics Chassis --- Vaidas Simaitis vjs@uiuc.edu 13 WITH MODULE IN GREEN
14
DES DHE Electronics Chassis --- Vaidas Simaitis vjs@uiuc.edu 14 Z-AXIS VIEW WITH R=52” ID CLEARANCE CYLINDER
15
DES DHE Electronics Chassis --- Vaidas Simaitis vjs@uiuc.edu 15 WORST-CASE MODULE EXTRACTION
16
DES DHE Electronics Chassis --- Vaidas Simaitis vjs@uiuc.edu 16 WHOLE ASSEMBLY CAN BE TILTED AT EITHER END FOR MODULE EXTRACTION
17
DES DHE Electronics Chassis --- Vaidas Simaitis vjs@uiuc.edu 17 Z-AXIS VIEW WITH HEAT SHIELDS ADDED
18
DES DHE Electronics Chassis --- Vaidas Simaitis vjs@uiuc.edu 18 BOTTOM PERSPECTIVE OF ENTIRE ASSEMBLY
19
DES DHE Electronics Chassis --- Vaidas Simaitis vjs@uiuc.edu 19 TOP PERSPECTIVE OF ENTIRE ASSEMBLY
20
DES DHE Electronics Chassis --- Vaidas Simaitis vjs@uiuc.edu 20 17.5” 22” 12” HEAT SHIELD SIZE
21
DES DHE Electronics Chassis --- Vaidas Simaitis vjs@uiuc.edu 21 COOLING SYSTEM SIZE 14” 12” 21.5”
22
DES DHE Electronics Chassis --- Vaidas Simaitis vjs@uiuc.edu 22 RADIATING SURFACE A = 2x(12”x 14”+ 12”x 22.5”+ 14”x 22.5”) = ~1500 in² = ~1 meter² L = Insulation thickness =.25” = 1/16 m l = thermal conductivity = ~ 0.03 W/mK for air If T-ambient= -20°C, T-electronics= 30°C then ΔT = 50°C Q = heat flow rate = l A ΔT / L= 0.03 x 1 x 50 x 16 = 24 Watts
23
DES DHE Electronics Chassis --- Vaidas Simaitis vjs@uiuc.edu 23 THERMOELECTRIC COOLER 1 Q-hot = heat released hot side = Q-cold + P-in where Q-cold = heat absorbed at cold side and P-in = electrical Power input T-hot = hot side temperature of thermoelectric = T-ambient + Q-hot x Θ where Θ = thermal resistance of the hot side heat exchanger ΔT = required temperature differential = T-hot – T-cold
24
DES DHE Electronics Chassis --- Vaidas Simaitis vjs@uiuc.edu 24 THERMOELECTRIC COOLER 2 T-ambient is in fact the temperature of the electronics, which is assumed to be 30°C The heat sink temperature rise can be 1 st approximated to be 10°C Then T-hot = 40°C If T-cold = -20°C then ΔT = 60°C Assume Q-cold = 10 W for each heat shield Assume Θ = 0.10 C/W (possibly?)
25
DES DHE Electronics Chassis --- Vaidas Simaitis vjs@uiuc.edu 25 THERMOELECTRIC COOLER 3 If P-in = 100 W (this is hopefully worst case) Q-hot = Q-cold + P-in = 10W+100W = 110W T-hot = T-ambient + Q-hot x Θ = 30°C + 110 W x 0.1 C/W = 41°C which is close to the assumed value
26
DES DHE Electronics Chassis --- Vaidas Simaitis vjs@uiuc.edu 26 THERMOELECTRIC COOLER 4 Single stage TE’s are most efficient at a ΔT = 40°C ± 10°C We probably need a 2-stage TE for handling ΔT of 60°C or more We have not yet explored the specifications and pricing of these 2-stage TE’s Yes, this is still all theoretical!
27
DES DHE Electronics Chassis --- Vaidas Simaitis vjs@uiuc.edu 27 TOTAL HEAT LOAD The estimated average DC power for a dual backplane is ~350 Watts If power supply is 80% efficient, it must be producing another 70 W Add 2 TE’s at 110 W each Add 2 fans at 30 W each TOTAL = 700 W Or 350 W for each of 2 heat exchangers
28
DES DHE Electronics Chassis --- Vaidas Simaitis vjs@uiuc.edu 28 HEAT EXCHANGERS T-electronics assumed = 30°C If we assume T-liquid = 10°C ΔT = 20°C Performance required is 350 W / 20°C = 17.5 W/C Lytron M05-050 spec is 20W/C @ ½ gpm with a liquid pressure drop of ~0.5 psi at an air flow of ~60 cfm with an air pressure drop of 0.2 inches of water (at 100 cfm, the drop is 0.3”)
29
DES DHE Electronics Chassis --- Vaidas Simaitis vjs@uiuc.edu 29 ΔT OF COOLING WATER 1 gallon of water weighs 3784 grams ½ gallon/min = 1892 grams/min 1W = 14.33 calories/min 350W = 5016 cal/min ΔT = 5016/1892 cal/g -> 2.65°C Can we run the two heat exchangers in each crate assembly in series, with a dt = 5.3°C ?
30
DES DHE Electronics Chassis --- Vaidas Simaitis vjs@uiuc.edu 30 FANS Should be routine For example: a Comair/Rotron Patriot PT2B3 is rated at 150 cfm at 0.3” drop running at 115 VAC at 60 Hz at 31 W. PT2D3 should be 75 cfm at 16 W, running at 1700 rpm instead of 3400 rpm
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.