Presentation is loading. Please wait.

Presentation is loading. Please wait.

Suffolk County Community College

Similar presentations


Presentation on theme: "Suffolk County Community College"— Presentation transcript:

1 Suffolk County Community College
WELCOME TO A&P I Suffolk County Community College Sayville Campus Adriana Pinkas, PhD

2 Why do we want to know how our body works?
Anatomy and physiology (A&P) is about the biology of the human body A&P approaches are complementary and never entirely separable Anatomy is the study of human body structures and their relation to each other (Form) Physiology is the study of human body function General principle in biology - Form Follows Function - for a certain function to be done, a biological structure will adapt a certain form. A&P is a foundation for advanced study in health care, exercise physiology, pathophysiology, and other health-care-related fields Considers the historical development and a central concept of physiology - homeostasis

3 Anatomy - The Study of Form
Examining structure of the human body Inspection - looking at the body appearance Palpation - feeling a structure with the hands Auscultation - listening to the natural sounds made by the body Percussion – tap the body, feel resistance Figure 1.1

4 Anatomy - The Study of Form
Cadaver dissection Cutting and separation of tissues to reveal their relationships Comparative anatomy Study of more than one species in order to examine structural similarities and differences, and analyze evolutionary trends

5 Anatomy - The Study of Form
Gross anatomy - Study of structures that can be seen with the naked eye Exploratory surgery Open body and take a look inside Medical imaging Viewing the inside of the body without surgery Radiology—branch of medicine concerned with imaging Microscopic anatomy Histology - Examination of cells with microscope Histopathology Microscopic examination of tissues for signs of disease Cytology Study of structure and function of cells Ultrastructure View molecular detail under electron microscope

6 Physiology - The Study of Function
Subdisciplines Neurophysiology (physiology of nervous system) Endocrinology (physiology of hormones) Pathophysiology (mechanisms of disease) Comparative physiology Limitations on human experimentation Study of different species to learn about bodily function Animal surgery Animal drug tests Basis for the development of new drugs and medical procedures

7 Living in a Revolution Early pioneers were important
Established scientific way of thinking Replaced superstition with natural laws Cell Theory - All living things are composed of cells and come from preexisting cells Modern biomedical science Technological enhancements Advances in medical imaging have enhanced our diagnostic ability and life-support strategies Genetic Revolution Human genome is finished Gene therapy is being used to treat disease

8 Anatomical Variation No two humans are exactly alike
70% most common structure 30% anatomically variant Variable number of organs Missing muscles, extra vertebrae, renal arteries Variation in organ locations situs solitus - normal situs inversus – organs reversed right to left dextrocardia - right-left reversal of the heart situs perversus – single organ occupies an atypical position Horseshoe kidney Normal Variations in branches of the aorta Pelvic kidney

9 Physiological Variation
Sex, age, diet, weight, physical activity Typical physiological values – heart rate, blood pressure, body temperature reference man 22 years old, 154 lbs, light physical activity consumes 2800 kcal/day reference woman same as man except 128 lbs and 2000 kcal/day Failure to consider variation can lead to overmedication of elderly or medicating women on the basis of research done on men

10 Common characteristics of life
Organization living things vs nonliving world -pattern that differs from environment, involves regulation of internal conditions within limit Homeostasis ability to maintain internal stability Responsiveness and movement ability to sense and react to stimuli; adaptation is a long term response Cellular composition all living tings are composed of cells Metabolism Anabolism, catabolism and excretion (energy ) Development growth - increase in size/cell number differentiation - specialization of cells to perform particular functions Reproduction produce copies of themselves (passing their genes to offspring) Evolution Mutations- change in DNA (genes) Natural selection – favor of transmission of some genes more than others

11 Human structure - hierarchy of complexity
Organism a single, complete individual Organ System human body made of 11 organ systems Organ structure composed of two or more tissue types that work together to carry out a particular function Tissue – a mass of similar cells and cell products that form discrete region of an organ and performs a specific function Cells the smallest units of an organism that carry out all the basic functions of life Cytology – the study of cells and organelles Organelles microscopic structures in a cell that carry out its individual functions Molecules make up organelles and other cellular components macromolecules – proteins, carbohydrates, fats, DNA Atoms – the smallest particles with unique chemical identities The pattern of organization at the lower levels determines both the characteristics and functions at the higher levels

12 Homeostasis Homeostasis – the body’s ability to detect change, activate mechanisms that oppose it, and thereby maintain relatively stable internal conditions keeping within set limits The internal environment of the body is in a dynamic state of equilibrium Auto regulation (intrinsic) - when a cell, organ, or organ system automatically adjusts itself in response to a change in the environment Extrinsic regulation – results from activity of nervous system and hormones (chemical messages) of endocrine system Loss of homeostatic control causes illness or death

13 Negative Feedback Loop
Body senses a change and activates mechanisms to reverse it - dynamic equilibrium Because feedback mechanisms alter the original changes that triggered them (temperature, for example), they are called feedback loops

14 Negative Feedback Example: Brain senses change in blood temperature
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Sweating 37.5 oC (99.5 oF) Vasodilation Core body temperature 37.0 oC (98.6 oF) Set point 36.5 oC (97.7 oF) Vasoconstriction Figure 1.10 Time text Shivering Example: Brain senses change in blood temperature If too warm, vessels dilate (vasodilation) in the skin and sweating begins (heat-losing mechanism) If too cold, vessels in the skin constrict (vasoconstriction) and shivering begins (heat-gaining mechanism)

15 Homeostasis and Negative Feedback Postural Change in Blood Pressure
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Person rises from bed Blood pressure rises to normal; homeostasis is restored Blood drains from upper body, creating homeostatic imbalance Cardiac center accelerates heartbeat Baroreceptors above heart respond to drop in blood pressure Figure 1.11 Baroreceptors send signals to cardiac center of brainstem

16 Homeostatic Control Mechanisms
Receptor - senses change in the body (e.g., stretch receptors that monitor blood pressure) Integrating (control) center - control center that processes the sensory information, “makes a decision,” and directs the response (e.g., cardiac center of the brain) Effector - carries out the final corrective action to restore homeostasis (e.g., cell or organ) Added some examples

17 Positive Feedback and Rapid Change
Self-amplifying cycle Leads to greater change in the same direction Feedback loop is repeated - change produces more change Normal way of producing rapid changes Occurs with childbirth, blood clotting, protein digestion, fever, and generation of nerve signals Added during birth info.

18 Positive Feedback Loops
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 3 Brain stimulates pituitary gland to secrete oxytocin 4 Oxytocin stimulates uterine contractions and pushes fetus toward cervix 2 Nerve impulses from cervix transmitted to brain Photo is too big, can be added to previous slide 1 Head of fetus pushes against cervix 1-18

19 Positive Feedback and Rapid Change
A Fever triggered by infection is beneficial Metabolic rate increases Body produces heat even faster Body temperature continues to rise Further increasing metabolic rate Cycle continues to reinforce itself > 40°C (104°F) It may create dangerous positive feedback loop Becomes fatal at 45°C (113°F)

20 Review of Major Themes Unity of Form and Function Cell Theory
Form and function complement each other; physiology cannot be divorced from anatomy Cell Theory All structure and function result from the activity of cells Homeostasis The purpose of most normal physiology is to maintain stable conditions within the body Evolution The human body is a product of evolution Hierarchy of Structure Human structure can be viewed as a series of levels of complexity

21 © U.H.B. Trust/Tony Stone Images/Getty Imagese
Medical Imaging Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Radiography (X- rays) William Roentgen’s discovery in 1885 Penetrate tissues to darken photographic film beneath the body Dense tissue appears white Over half of all medical imaging Until 1960s, it was the only method widely available (a) X-ray (radiograph) © U.H.B. Trust/Tony Stone Images/Getty Imagese Figure 1.13a

22 Custom Medical Stock Photos, Inc.
Medical Imaging Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Radiopaque substances Injected or swallowed Fills hollow structures Blood vessels Intestinal tract Figure 1.13b (b Cerebral angiogram Custom Medical Stock Photos, Inc.

23 Medical Imaging Computed tomography (CT scan)
Formerly called a CAT scan Low-intensity X-rays and computer analysis Slice-type image Increased sharpness of image Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Figure 1.13c (c) Computed tomographic (CT) scan © CNR/Phototake

24 Medical Imaging—Nuclear Medicine
Positron emission tomography (PET) scan Assesses metabolic state of tissue Distinguished tissues most active at a given moment Mechanics—inject radioactively labeled glucose Positrons and electrons collide Gamma rays given off Detected by sensor Analyzed by computer Image color shows tissues using the most glucose at that moment Damaged tissues appear dark Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. (d) Positron emission tomographic (PET) scan Tony Stone Images/Getty Images Figure 1.13d

25 © Monte S. Buchsbaum, Mt. Sinai School of Medicine, New York, NY
Medical Imaging Magnetic resonance imaging (MRI) Slice-type image Superior quality to CT scan Best for soft tissue Mechanics Alignment and realignment of hydrogen atoms with magnetic field and radio waves Varying levels of energy given off used by computer to produce an image Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. (e) Magnetic resonance image (MRI) © Monte S. Buchsbaum, Mt. Sinai School of Medicine, New York, NY Figure 1.13e

26 Medical Imaging Sonography Second oldest and second most widely used
Mechanics High-frequency sound waves echo back from internal organs Avoids harmful X-rays Obstetrics Image not very sharp Figure 1.14

27 Expected Learning Outcomes
The Scope of Anatomy and Physiology Define anatomy and physiology and relate them to each other. Describe several ways of studying human anatomy. Define a few subdisciplines of human physiology. Human Structure List the levels of human structure from the most complex to the simplest. Discuss the clinical significance of anatomical variation among humans. Human Function State the characteristics that distinguish living organisms from nonliving objects. Explain the importance of defining a reference man and woman. Define homeostasis and explain why this concept is central to physiology. Define negative feedback, give an example of it, and explain its importance to homeostasis. Define positive feedback and give examples of its beneficial and harmful effects.


Download ppt "Suffolk County Community College"

Similar presentations


Ads by Google