Download presentation
Presentation is loading. Please wait.
Published byRosamond Reynolds Modified over 9 years ago
1
Photon reconstruction and calorimeter software Mikhail Prokudin
2
Outline ► Calorimeter software development photon reconstruction ► cluster finder ► simple reconstruction UrQMD events matching Calorimeter drawing tools ► Cluster fitting requirements ► Conclusions ► Next steps
3
Photon reco. Requirements ► Robust reconstruction of single photons ► Two close photons case: robust reconstruction of parameters in case two separate maximums separation one/two photons in case of one maximum ► Fast!
4
Cluster finder Cluster formation ► Remove maximums near charged tracks real tracking ► Precluster: formed near local maximum ► cut on maximum energy find maximum 2x2 matrix near maximum add a neighbor to local maximum cell with minimal energy deposition ► to add inromation check precluster energy ► >0.5GeV ► Cluster: group of preclusters with common cells 4870 Central UrQMD Au+Au 25GeV CbmEcalClusterFinderV1. At SVN Requirements ► Clusters should be large information for unfolding ► Clusters should be small hadrons background
5
Cluster finder performance Benchmark ► 2x1 GeV photons ► 3x3 cm cells inner calorimeter region ► 2-10° angle geometry of inner calorimeter region
6
Simple reconstruction ► Energy: calibration ► only energy in scintillator is visible ► Position: S-curves ► χ 2 calculation for reconstructed photon CbmEcalRecoSlow. At SVN
7
UrQMD events with simple reco Subtraction of mixed events is necessarily! Invariant mass spectra True Mixed Gamma spectra
8
Simple reconstruction ► Robust reconstruction of single photons ► Two close photons case: ► occupancy robust reconstruction of parameters in case two separate maximums separation one/two photons in case of one maximum ► Fast! ► Need more complex reconstruction!
9
Matching ► Why? check origin of cluster ► neutron clusters physics processes ► π 0 and η decays ► prompt photons ► … ► Most simple method at moment ► Energy deposition in the cluster > 70% of cluster energy γ /e is secondary also look for mother ► showers started before the calorimeter treated correctly loss clusters with more than one maximums CbmEcalMatching. At SVN
10
Matching. Usage example π0π0 η π 0 born after IP (conversion)
11
Calorimeter drawing tool ► Draw calorimeter structure energy deposition in calorimeter reconstructed tracks ► and energies reconstructed photons ► energies ► and matched MC particles clusters ► found approximation quality ► and χ 2 of cluster MC tracks ► type (photon, neutron …) ► energy ► …and all at one picture!
13
Calorimeter drawing tools ► Photons MC Reconstructed ► * ► (Anti) neutrons ► Charged tracks Reconstructed ► * MC ► Secondary Photons Electrons CbmEcalQualityCheck. At SVN
14
Fitter requirements ► Robust reconstruction of single photons ► Two close photons case: robust reconstruction of parameters in case two separate maximums separation one/two photons in case of one maximum ► χ 2 criteria ► all analyzed approaches have failed to reconstruct photons energy/position correctly ► χ 2 shape should not depend on photon’s energy same value for efficiency cut ► separation power of one/two photons in case of one maximum as a criteria example: with 95% efficiency for clusters formed by single photon
15
Realization of fitter ► CbmEcalRecoSlow ► current version at SVN no so slow actually! ► 40 sec per UrQMD event first approximation ► CbmEcalRecoSimple χ 2 minimization ► minimizer TFitterMinuit ► shower shape (E pred ) shower lib ► σ 2 formula
16
Shower width ► Energy deposition in cluster cells are not independent storing of RMS in shower library useless ► Analytical formula with correlation ► ALICE σ 2 =c 0 (E meas +c 1 ) ► no correlations! ► PHENIX σ 2 =c 0 (E meas (1- E meas /E cluster ) (1+k sin 4 θE cluster )+c 1 ) ► correlations are in Angle dependence ► shower library h4 h5 h4 h5
17
σ 2 formula ► σ 2 formula declared in configuration file ► … and parameters too for easy change ► without recompilation different formulas for different cell types ► … to maintain commonness ► Sum of photon’s energies fixed to energy of cluster a switch in configuration file ► Parameters space is huge σ 2 formula ► best c n could be computed if σ 2 formula is fixed also parameters of cluster finder # Number of cells types for reconstruction types=4 # Number of constants for each type consts=2 # Use Ecluster, Emeas and Epred for measured cluster energy, measured cell energy and predicted cell energy respectively c0_1=0.008 c1_1=0.0016666 c0_2=0.008 c1_2=0.00345 c0_3=-1111 c1_3=-1111 c0_4=0.008 c1_4=0.0043333 sigma_1=c1*(Emeas*(1-Emeas/Ecluster)+c0) sigma_2=c1*(Emeas*(1-Emeas/Ecluster)+c0) sigma_3=-1111 sigma_4=c1*(Emeas*(1-Emeas/Ecluster)+c0) # if chi2 for cluster is less than no fitting chi2th=-1111 # Max iterations in fitting process maxiterations=1000 # Steps for calculation of gradients estep=0.0001 cstep=0.0005 # Fix sum of energies of cluster particles to energy of cluster fixclusterenergy=1 # # Cluster finder stuff # # Maximums belong to charged tracks should excluded? removecharged=1 # Minimum precluster energy minclustere=0.3 # Minimum energy of precluster maximum minmaxe=0.2 # An algorithm for preclustering: 0 --- default, 1 --- PHENIX like, # 2 --- ALICE like, 3 --- default, but remove low energy cells preclusteralgo=0 # Minimum cell energy mincelle=0.020 # Minimum size of precluster minsize=4 # Attach to cluster nearby cells with Edep>fMinCellE attachcells=0.1 Example of configuration file
18
Photon reconstruction. Merged photons Simple reconstruction Cluster fitting Fitting of clusters with two maximums allows us disentangle photons! σ 2 formula and parameters does not require much tuning!
19
Fitter requirements ► Robust reconstruction of single photons ► Two close photons case: robust reconstruction of parameters in case two separate maximums separation one/two photons in case of one maximum ► χ 2 criteria ► all analyzed approaches have failed to reconstruct photons energy/position correctly ► χ 2 shape should not depend on photon’s energy same value for efficiency cut ► separation power of one/two photons in case of one maximum as a criteria example: with 95% efficiency for clusters formed by single photon
20
χ 2 distributions. Single photons 95% 1 GeV95% 4 GeV σ 2 =c 0 (E meas (1-E meas /E cluster )+c 1 ) c1=0.0005 95% 1 GeV95% 4 GeV σ 2 =c 0 (E meas +c 1 ) Shape of χ 2 for each energy looks Ok, but cut with 95% efficiency has different value! Need a different σ 2 formula!
21
Rejection power. Inner region σ 2 =c 0 (E meas (1-E meas /E cluster )+c 1 )σ 2 =c 0 (E meas +c 1 )
22
Rejection power. Outer region σ 2 =c 0 (E meas (1-E meas /E cluster )+c 1 )σ 2 =c 0 (E meas +c 1 ) Reconstruction in outer region is most sensible to σ 2 formula!
23
Conclusions ► Calorimeter software development in progress Cluster finder: CbmEcalClusterFinderV1 Reconstruction: CbmEcalRecoSimple ► and CbmEcalRecoSlow Matching: CbmEcalMatching Quality check: CbmEcalQualityCheck
24
Conclusions ► Photons reconstruction simple procedures are ready to use more complicated procedures ► not too slow ► fit clusters with more than one maximum ► still have limited usability σ 2 formula ► bad cluster rejection ► not trivial ► All presented calculations done using 2 computers UrQMD transport, reconstruction, etc. ► 3.0 GHz Core 2 Duo ► 2.0 GHz Core 2 Duo (My laptop)
25
Next steps ► Reconstruction tuning ► Detector optimization geometry segmentation ► Detailed sensitivity studies for process with photons π 0, η, χ c … ► e/ π separation with real tracking ► Detailed detector geometry construction details light collection efficiency
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.