Presentation is loading. Please wait.

Presentation is loading. Please wait.

几个有趣的黑洞解 蔡 荣 根 中国科学院理论物理研究所 (中科大交叉中心,2010.5.20).

Similar presentations


Presentation on theme: "几个有趣的黑洞解 蔡 荣 根 中国科学院理论物理研究所 (中科大交叉中心,2010.5.20)."— Presentation transcript:

1 几个有趣的黑洞解 蔡 荣 根 中国科学院理论物理研究所 (中科大交叉中心, )

2 (1) A Lifshitz black hole in R^2 Gravity
一、有温度,没有质量和熵的黑洞 (1) A Lifshitz black hole in R^2 Gravity (2) Black holes in Lovelock gravity 二、考虑了共形反常的黑洞解 (3) Black holes in gravity with conformal anomaly and logarithmic term in black hole entropy References: (1) RGC, Y. Liu and Y.W. Sun, JHEP 0910, 080 (2009), arXiv: (2) RGC, L.M. Cao and N. Ohta, PRD 81, (2010), arXiv: (3) RGC, L.M. Cao and N. Ohta, JHEP 1004, 082 (2010), arXiv:

3 Einstein’s Equations (1915):
{Geometry matter (energy-momentum)}

4 Thermodynamics of black holes :
Schwarzschild Black Hole: Mass M horizon More general: Kerr-Newmann Black Holes M, J, Q No Hair Theorem

5 Four Laws of Black Hole mechanics: The 0th law k =const.
The 1st law d M=k dA/8πG + Ω d J +Φd Q The 2nd law d A >0 The 3rd law k ->0 k: surface gravity, J. Bardeen,B. Carter, S. Hawking, CMP,1973

6 Four Laws of Black Hole Thermodynamics:
The 0th law T=const. on the horizon The 1st law d M= T d S + Ω dJ+Φ d Q The 2nd law d (SBH +Smatter)>=0 The 3rd law T->0 Key Points: T = k/2π S= A/4G J. Bekenstein, 1973; S. Hawking, 1974, 1975

7 Black hole is a window to quantum gravity
Thermodynamics of black hole: dM = T dS (S.Hawking, 1974, J. Bekenstein, 1973)

8 Entropy in a system with surface area A: S<A/4G
Holography of Gravity Entropy in a system with surface area A: S<A/4G             (‘t Hooft) (L. Susskind) The world is a hologram?

9 AdS/CFT correspondence
(J. Maldacena, 1997) IIB superstring theory on AdS5 x S5 N=4 SYM Theory “Real conceptual change in our thinking about Gravity.” (E. Witten, Science 285 (1999) 512)

10 A Lifshitz black hole in R^2 gravity
Scaling symmetry: Lifshitz theory: Gravity dual? (S. Kachru, arXiv: )

11 Consider the action:

12 The Lifshitz spacetime

13 Non-extremal black holes:

14 Thermodynamics: =0! =0!

15 (2) Black holes without mass and entropy in Lovelock gravity

16 Gauss-Bonnet Black Holes
Equations of motion: metric ansatz:

17 The solution: [D. Boulware and S. Deser, PRL 55, 2656 (1985)
J. T. Wheeler, NPB 268, 737 (1986) R.G. Cai, PRD65, (2002) ]

18 More general case: Lovelock black holes
[J.T. Wheeler, NPB 273, 732 (1986); R. Myers and J. Simon, PRD 38, 2434 (1988); R. G. Cai, PLB 582, 237 (2003)]

19 Thermodynamic quantities

20 Now consider the spacetime:
Equations of motion:

21

22

23 Some examples: arXiv:hep-th/0611188 ] [H. Maeda and N. Dadhich,

24 Thermodynamics:

25

26 Wald formula and euclidean action:
1) when m is odd, 2) When m is even,

27 An example: Euclidean action: M=0

28 (3) Black holes in gravity with conformal anomaly
and logarithmic term in black hole entropy (M. Duff, hep-th/ ) In four dimensions:

29 Two conditions: Its trace is given by it is covariant conserved (3) Additional assumption i) Two dimensions; ii) FRW universe

30

31

32 The meanings of Q: Soften the singularity at r=0:

33 Thermodynamics:

34 Entropy formula of interest:
* S. Solodukhin, PRD 57, 2410 (1998) * J.E. Lidsey, arXiv: * RGC, L.M. Cao and Y.P. Hu, JHEP 0808, 090 (2008) * S~ A + ln A +1/A +1/A^2+…. However, Wald formula…..

35 谢谢!


Download ppt "几个有趣的黑洞解 蔡 荣 根 中国科学院理论物理研究所 (中科大交叉中心,2010.5.20)."

Similar presentations


Ads by Google