Presentation is loading. Please wait.

Presentation is loading. Please wait.

Author : Chengwei Wang, Vanish Talwar*, Karsten Schwan, Parthasarathy Ranganathan* Conference: IEEE 2010 Network Operations and Management Symposium (NOMS)

Similar presentations


Presentation on theme: "Author : Chengwei Wang, Vanish Talwar*, Karsten Schwan, Parthasarathy Ranganathan* Conference: IEEE 2010 Network Operations and Management Symposium (NOMS)"— Presentation transcript:

1 Author : Chengwei Wang, Vanish Talwar*, Karsten Schwan, Parthasarathy Ranganathan* Conference: IEEE 2010 Network Operations and Management Symposium (NOMS) Advisor: Yuh-Jye Lee Reporter: Yi-Hsiang Yang Email: M9915016@mail.ntust.edu.tw 12011/06/09

2 Outline Introduction Problem Description EbAT Overview Entropy Time Series Evaluation With Distributed Online Service Discussion: Using Hadoop Applications Conclusions And Future Work 2 2011/06/09

3 Introduction The online detection of anomalies Detection must operate automatically No need for prior knowledge about normal or anomalous behaviors Apply to multiple levels of abstraction and subsystems and in large-scale systems 3 2011/06/09

4 Introduction EbAT-Entropy-based Anomaly Testing EbAT analyzes metric distributions rather than individual metric thresholds Use entropy as a measurement 2011/06/094

5 Introduction Use online tools Spike Detecting (visually or using time series analysis) Signal Processing Subspace Method – to identify anomalies in entropy time series in general Detect anomalies Not well understood (i.e., no prior models) Have not been experienced previously 2011/06/095

6 Contributions A novel metric distribution-based method for anomaly detection using entropy A hierarchical aggregation of entropy time series via multiple analytical methods An evaluation with two typical utility cloud scenarios Outperforms threshold-based methods on average 57.4% in F1 score 59.3% on average in false alarm rate with a ’near-optimum’ threshold-based method 2011/06/096

7 Problem Description A utility cloud’s physical hierarchy 2011/06/097

8 Problem Description - Utility cloud’s Exascale 10M physical cores, there may be up to 10 virtual machines per node (or per core) Dynamism Utility clouds serve as a general computing facility Heterogeneous applications included Applications tend to have different workload patterns Online management of virtual machines make a utility cloud more dynamic 2011/06/098

9 State of the Art Threshold-Based Approaches Firstly set up upper/lower bounds for each metric Any of the metric observation violates a threshold limit An alarm of anomaly is triggered Widely used with advantages of simplicity and ease of visual presentation Intrinsic shortcomings Incremental False Alarm Rate (FAR) n metrics: m 1, m 2... m n for each mi the FAR is r i overall FAR 50 metrics with FAR 1/250 each (1 false alarm every 250 samples), there will be 50/250 = 1/5 2011/06/099

10 State of the Art Detection after the Fact Consider 100 Web Application Servers (WAS) Memory use is slowly increasing When one of the WASes raises an alarm because it crosses the threshold All other 99 WASes raise Poor Scalability No longer efficient to monitor metrics individually Statistical Methods Can’t deal with scale of cloud computing systems With high computing overheads Require prior knowledge about application SLOs 2011/06/0910

11 EBAT Overview Metric collection Leaf component collects raw metric data from its local sensors Non-leaf component collects not only its local metric data but also entropy time series data from its child nodes Entropy time series construction Data is normalized and binned into intervals Leaf nodes only generate monitoring events from its local metrics Non-leaf nodes generate m-events from local metrics and child nodes’ entropy time series Entropy time series processing Analyzed by spike detection, signal processing,subspace method 2011/06/0911

12 EBAT Overview 2011/06/0912

13 Entropy Time Series Look-Back Window EbAT maintains a buffer of the last n samples’ metrics observed Can be implemented in high speed RAM Pre-Processing Raw Metrics Step 1: Normalization Transforms a sample value to a normalized value by dividing the sample value by the mean of all values Step 2: Data binning Sample values are hashed to a bin of size m+1 Predefine a value range [0,r] split it into m equal-sized bins indexed from 0 to m-1 sample value /(r/m) 2011/06/0913

14 Entropy Time Series 2011/06/0914

15 Entropy Time Series M-Event Creation m-event is generated that includes the transformed values from multiple metric types and/or child into a single vector for each sample instance 2011/06/0915

16 Entropy Time Series - M-Event Entropy value and a local metric value should not be in the same vector of an m-event Two types of m-events: global m-events aggregating entropies of its subtree local m-events recording local metric transformation values, i.e. bin index numbers Ea and Eb have the same vector value if they are created on the same component and ∀ j ∈ [1, k],Baj = Bbj 2011/06/0916

17 Entropy Time Series Entropy Calculation and Aggregation X with possible values {x1,x2..., xn}, its entropy is Get the global and local entropy time series describing metric distributions for that look back window Entropy I Combination of sum and product of individual child entropies Entropy II 2011/06/0917

18 Evaluation With Distributed Online Service RUBiS benchmark deployed as a set of virtual machines To detect synthetic anomalies injected into the RUBiS services Effectiveness is evaluated using precision, recall and F1 score EbAT outperforms threshold-based methods average 18.9% increase in F1 score 50% on average in false alarm rate with the ’near-optimum’ threshold-based method 2011/06/0918

19 Evaluation With Distributed Online Service Experiment Setup The testbed uses 5 virtual machines (VM1 to VM5) on Xen platform hosted on two Dell PowerEdge 1950 servers (Host1 and Host2). VM1, VM2, and VM3 are created on Host1 Load generator and an anomaly injector are running on two virtual machines VM4 and VM5 in Host2 The generator creates 10 hours’ worth of service request load for Host1 Anomaly injector injects 50 anomalies into the RUBiS online service in Host1 2011/06/0919

20 Evaluation With Distributed Online Service 2011/06/0920

21 Evaluation With Distributed Online Service 2011/06/0921

22 Evaluation With Distributed Online Service Baseline Methods – Threshold-Based Detection Observed CPU utilization with a lower bound and higher bound threshold Two separate values of the thresholds near-optimum threshold value set by an ’oracle’-based method statically set threshold value that is not optimum 2011/06/0922

23 Baseline Methods – Threshold-Based Detection Calculate the histogram The lowest and highest 1% of the values are identified as representing outliers outside an acceptable operating range 2011/06/0923

24 Evaluation Results 2011/06/0924

25 Evaluation Results 2011/06/0925

26 Evaluation Results EbAT methods outperform threshold-based methods in accuracy and almost all precision and recall measurements Threshold II only detects 16 anomalies out of total 50 The comparison between Entropy I and Threshold I EbAT’s metric distribution-based detection aggregating metrics across multiple vertical levels has advantages over solely looking at host level 2011/06/0926

27 Discussion: Using Hadoop Applications Using EbAT to monitor complex, large-scale cloud applications Deploy three virtual machines named master, slave1 and slave2 2 hours with 6 anomalies caused by application level task failures EbAT observes CPU utilization and the number of VBD- writes and calculates their entropy time series 2011/06/0927

28 Discussion: Using Hadoop Applications 2011/06/0928

29 Discussion: Using Hadoop Applications 2011/06/0929

30 Conclusions And Future Work EbAT is an automated online detection framework for anomaly identification and tracking in data center systems Does not require human intervention or use predefined anomaly models/rules Future work concerning EbAT includes Zoom in detection to focus on possible areas of causes, Extending and evaluating the methods for cross-stack (multiple) metrics Evaluating scalability with large volumes of data and numbers of machines Continued evaluation with representative cloud workloads such as Hadoop 2011/06/0930

31 Thanks for listening! Q&A 2011/06/0931


Download ppt "Author : Chengwei Wang, Vanish Talwar*, Karsten Schwan, Parthasarathy Ranganathan* Conference: IEEE 2010 Network Operations and Management Symposium (NOMS)"

Similar presentations


Ads by Google