Download presentation
1
RVDT
2
Principle It produces an electrical output which is proportional to the angular displacement of the magnetic movable core. 9AEI
3
Uex = excitation voltage, Uo = output voltage, 1 = excitation coil,
2 = output coil, 3 = moving core or armature, 4 = sensing shaft 9AEI
4
9AEI
5
9AEI
6
9AEI
7
Rotary Variable Differential Transformer (RVDT)
Fig 1 9AEI
8
Operation It consists of a single primary winding P1 and two secondary windings S1 and S2. The secondary windings have an equal number of turns. They are identically placed on either side of the primary winding connected in series opposition. A shaft whose angular velocity is to be measured is connected to the core. 9AEI
9
The out put of RVDT is given by eo= es1-es2
When primary winding is excited by an a.c signal, voltages are induced in each secondary section. The out put of RVDT is given by eo= es1-es2 Where es1 is induced voltage in secondary s1 es2 is induced voltage in secondary s2 9AEI
10
when the core is at null position
When the core at null position the output voltage in secondary windings S1 and S2 are equal. Therefore the differential output is e0=0 Fig 2 9AEI
11
When The Core Rotates In Clockwise Direction
When the core rotates in clockwise direction es1>es2. The output voltage e0 is positive and in phase with input signal. Fig 3 9AEI
12
When the core rotates in Anticlockwise Direction
When the core is in anticlockwise direction es2>es1. The output voltage e0 is negative and 1800 out of phase with the input signal. Fig 4 9AEI
13
The amount of the angular displacement and its direction may be ascertained from the magnitude and the phase of output voltage of the transducer. 9AEI
14
Advantages RVDT provide an extremely reliable solution for precision angular displacement (position) measurements. They are used wherever a physical quantity can be converted to rotary displacement. The construction of the device prevents direct contact between the moving and the stationary part Therefore insures a long operational life 9AEI
15
vibration 9AEI306.11
16
Vibration Vibration refers to mechanical oscillations about an equilibrium point . The oscillations may be periodic such as the motion of a pendulum random such as the movement of a tire on a gravel road 9AEI
17
Importance The need for making measurement of vibrations has arisen mainly because of The growth of environmental testing Specifications Many a times requires that the equipment should withstand stated levels of vibrations This can be done quantitatively only through vibration measurements 9AEI
18
9AEI
19
Vibration Vibration Monitoring is Important in power stations Turbines
generators to give an early warning of impending conditions which may develop and lead to complete failure and destruction of equipment 9AEI
20
Vibration Vibration defines the motion in structure and machine components. Vibration can be due to unbalance of rotating parts, misalignment, external forces. 9AEI
21
Vibrations 9AEI
22
Vibration Measurement Are Made In General For Three Major Reasons
A) Obtaining the response of a body or structure, such as the response of an aircraft wing to various load conditions. It requires the analysis of signals in addition to actual measurements. 9AEI
23
9AEI
24
(b) Defining the vibratory environment surrounding a vibratory source.
Like floor vibrations surrounding a high speed compressor or generator. A judicious selection of the number of measurement stations and their location at which vibration is measured is important. The investigation includes a number of fields tests are carried out under varying environmental conditions. 9AEI
25
9AEI
26
Monitoring and control of a system
(c) Such as in maintaining acceleration at a desired level in electromagnetic exciters or in an inertial navigational system. Measurements made are mainly on the acceleration levels, acceleration-time waveforms, spectral density distribution. All measurements are carried out with suitable velocity or acceleration transducer. 9AEI
27
9AEI
28
Moving Coil type Velocity Transdcuer
29
Principle This transducer utilizes the voltage produced in a coil on account of change in flux linkages resulting from change in reluctance. 9AEI
30
diaphragm coil Magnet case Output wires 9AEI
31
Moving Coil Type Velocity Transducer
Fig 1 9AEI
32
Operation It consists of an arm on which coil is mounted
A mass is attached to the end of the arm. The velocity to be measured is applied to the arm Therefore the coil moves in the field of a permanent magnet When the coil moves a voltage is generated which is proportional to the velocity of the coil. 9AEI
33
9AEI
34
N = number of turns of the coil R = reluctance of the coil
Therefore the magnitude of the voltage is a measure of velocity and is given by Where N = number of turns of the coil R = reluctance of the coil = rate change of flux 9AEI
35
Advantages High stability at temperature varying conditions.
Less effective to stray magnetic field 9AEI
36
Moving Iron Type Velocity Transducer
37
Principle This Transducer Utilizes The voltage produced in a coil
On account of change in flux linkages Resulting from change in reluctance. 9AEI
38
M a g n e t coil coil O/p 9AEI
39
Operation Fig.1 shows a moving iron (magnet ) type linear velocity
transducer. It consists of a permanent magnet which is rigidly coupled to the device whose velocity is to be measured. There is a coil surrounding the permanent magnet. 9AEI
40
Operation The motion of the magnet induces voltage in the coil and
Amplitude of the voltage is directly proportional to the velocity. For a coil placed in a magnetic field, the voltage induced in the coil is directly proportional to the velocity. The polarity of the output voltage determines the direction of motion. 9AEI
41
Advantages Maintenance free due to absence of mechanical surfaces or contacts. Output voltage is linearly proportional to velocity. Used as event markers Less expensive 9AEI
42
Disadvantages Performance is adversely affected by stray magnetic fields. These fields cause noise. Frequency response is usually limited and is stated Susceptible to vibrations, it leads to demagnetization 9AEI
43
AC Tachogenerator 9AEI306.23
44
Principle It operates on the principle that…
The relative motion between a magnetic field and a conductor results the voltage generation in that conductor. 9AEI306.23
45
A.C Tacho Generator The Fig. shows the A.C Tacho Generator. 9AEI306.23
46
9AEI306.23
47
Construction It consists of Permanent magnet (rotor) Coil (stator)
Rectifier bridge Moving Coil (MC) voltmeter 9AEI306.23
48
Operation When the magnet rotates in a stationary coil , an AC voltage is generated The amplitude and the frequency of this voltage are both proportional to the speed of rotation Thus either amplitude or frequency of induced voltage may be used as a measure of rotational speed The output voltage of ac tacho generator is rectified and is measured with MC voltmeter 9AEI306.23
49
Advantages Maintenance free due to the absence of brushes and commutators 9AEI306.23
50
Disadvantages Large number of poles are required
Requires high input impendence display devices 9AEI306.23
51
DC Tacho Generator
52
Principle It operates on the principle that..
The relative motion between a magnetic field and a conductor results the voltage generation in that conductor. 9AEI
53
For measurement of angular velocity tachogenerators are used
There are two types of tacho generators 1) D.C tacho generator 2) A.C tacho generator 9AEI
54
DC Tacho Generator Fig 1 9AEI
55
Construction An armature is rotating type and this magnet is a fixed type. The armature is coupled to the machine whose velocity is to be measured. It consists of commutator and brushes is connected to the armature Output is connected to a Moving Coil (MC) type voltmeter 9AEI
56
9AEI
57
As the armature speed increases the relative motion also increases.
The output voltage is induced in the armature winding. The magnitude of this voltage is proportional to the speed of the armature. A commutator and brushes are connected in the armature to give the DC output voltage. 9AEI
58
Operation When the armature is stationary there is no relative motion between the magnetic field and the armature winding. Hence the output voltage is ZERO. 9AEI
59
The polarity of output voltage indicates the direction of rotation
This output voltage is measured with the help of moving coil voltmeter calibrated in terms of speed. The relationship between the DC output voltage and angular velocity is given by 9AEI
60
Nc = No. of conductors in armature øp = flux per pole
Where ω = angular velocity e0 = DC output voltage Np = No. of poles Nc = No. of conductors in armature øp = flux per pole Npp = parallel paths between positive and negative brushes. 9AEI
61
Advantages The direction of rotation is indicated by the polarity of the output voltage. 9AEI
62
Disadvantages The commutator and brushes required periodic maintenance. The output voltage is non-linear 9AEI
63
Photo Electric Tachometer
64
Principle It converts speed of rotation into an electrical signal.
This is used to determine angular speed of a rotating device. 9AEI
65
Photo Electric Tachometer
Light source shaft Opaque Disc Light sensor 9AEI
66
It consists of an opaque disc mounted on a rotating shaft.
Construction It consists of an opaque disc mounted on a rotating shaft. The disc has a number of equidistant holes on its circumference. At one side of the disc a light source is fixed At another side of the disc a light sensor is placed on line with the light source. 9AEI
67
Operation When the opaque portion of the disc is between the light source and light sensor , The light sensor is unilluminated and produces no output. But when a hole appears between the light source and the light sensor , the light falls upon the sensor and produces an output pulse. 9AEI
68
The frequency of output pulses depends upon the number of holes in the disc and its speed of rotation. Since the number of holes is fixed then the pulse rate is a function of speed rotation. The pulse rate can be measured by an electronic counter which can be directly calibrated in the terms of speed in rpm. 9AEI
69
Advantages and Disadvantages
Digital output , requires no ADC Simple electronic circuitry Disadvantages :- Light source must be replaced from time to time 9AEI
70
Toothed Rotor Variable Reluctance Transducer
9AEI
71
Principle It converts speed of rotation into an electrical signal.
This is used to determine angular speed of a rotating device. 9AEI
72
Toothed Rotor Variable Reluctance Transducer
FIG 1 9AEI
73
Induced pulses To timer/counter /frequency meter Shaped amplifier
magnet Shaped pulses Toothed rotor 9AEI
74
Construction It consists of a small permanent magnet with a coil wound around it. This magnet is placed near a metallic toothed rotor Rotor is made with Ferro magnetic material It is connected to shaft whose speed is to be measured. 9AEI
75
Operation When toothed rotor is rotating the air gap will change between the rotor and the permanent magnet. Due to change in the air gap the field expanses or collapses. The voltage is induced in the coil in the form of pulses. 9AEI
76
The pulses are amplified and fed to a counter or frequency meter.
The frequency of pulses depend upon the number of teeth on wheel and its speed of rotation. The pulses are amplified and fed to a counter or frequency meter. 9AEI
77
Let T is the number of teeth on rotor.
N is the number of revolutions per second. P is the number of pulses per second. Then If the rotor has 60 teeth and the counter counts the pulses in one Second. Then the counter will directly display the speed in rpm. 9AEI
78
Advantages Simple and rugged construction Maintenance free
Easy to calibrate The information from the device can be transmitted easily 9AEI
79
Hall Probe
80
Principle It converts speed of rotation into an electrical signal.
This is used to determine angular speed of a rotating device. 9AEI
81
9AEI
82
Hall Probe I VH Hall Voltage 9AEI
83
Operation The hall probe is rigidly suspended between the poles of permanent magnet. The magnet is connected to the shaft whose angular velocity is to be measured. As the shaft rotates the hall probe remains stationary. 9AEI
84
9AEI
85
9AEI
86
It is done by means of a constant current source
A constant current is applied to the electrical contacts at the end of the probe It is done by means of a constant current source A voltage (Hall voltage ) is generated across the probe The voltage generated across the probe is directly proportional to the sine of the angular displacement of the shaft. 9AEI
87
The hall voltage is given by Where KH =Hall coefficient
I = electric current B= flux density t= thickness of strip A linear relationship exists between the rotation and the output voltage can be obtained up to ± 60 of the rotation. 9AEI
88
Advantages 1. Small size. 2. High resolution.
3.It is a non contact type device 9AEI
89
Applications Used for measurement of Velocity rpm Non contact current
Magnetic field 9AEI
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.