Download presentation
Presentation is loading. Please wait.
Published byEdmund Edwards Modified over 9 years ago
1
Chapter 6 Field Effect Transistors 6.1 Transistor Operation 6.2 The Junction FET 6.3 The Metal-Semiconductor FET 6.4 The Metal-Insulator-Semiconductor FET 6.5 The MOS Field-Effect Transistor
2
junction FET (JFET) metal-semiconductor FET (MESFET) metal-insulator-semiconductor FET (MISFET) metal-oxide-semiconductor FET (MOSFET) Field-effect Transistor(FET)
3
Dominant features of p-n junction 1. The injection of minority carriers with forward bias → BJT 2. A variation of the depletion width W with reverse bias → FET FET v.s. BJT Comparison in terms of carrier type The FET is a majority carrier device, and is therefore often called a unipolar transistor. The BJT, on the other hand, operated by the injection and collection of minorpty carriers. Comparison in terms of number of terminals Like its bipolar counterpart, the FET is a three-terminal device in which the current through two terminal is controlled at the third. Comparison in terms of control type Unlike the BJT, however, field-effect devices are controlled by a voltage at the third terminal rather than by a current.
4
1.FET was proposed first in 1930 by Lilienfeld. 2.Bardeen and Brattain invented the first bipolar transistor. 3.This major breakthrough was rapidly followed by Shockley’s extension of the concept to the BJT. 4.The first MOSFET was demonstrated in 1960 by Kahng and Atalla. History of Transistors
5
6.1 Transistor Operation 6.2 The Junction FET 6.3 The Metal-Semiconductor FET 6.4 The Metal-Insulator-Semiconductor FET 6.5 The MOS Field-Effect Transistor
7
We can achieve large variations in v D by making small changes in v G. (voltage-controlled amplification) We can switch from the bottom of the load line (i D = 0) to almost the top (i D ≈ E/R) by appropriate changes in v G. (voltage-controlled switching)
8
6.1 Transistor Operation 6.2 The Junction FET 6.3 The Metal-Semiconductor FET 6.4 The Metal-Insulator-Semiconductor FET 6.5 The MOS Field-Effect Transistor
9
The current I D flows through an n-type channel between two p + regions. A reverse bias between these p + regions and the channel causes the depletion regions to intrude into the n material. The effective width of the channel can be restricted. The end of the channel from which electrons flow is called the source. The end toward which they flow is called the drain. The p + regions are called gates. The voltage V G refers to the potential from each gate region G to the source S.
10
6.2.1 Pinch-off and Saturation
11
Without Gate Control 6.2.1 Pinch-off and Saturation
12
With Gate Control The effet of a negative gate bias V G is to increase the resistance of the channel and induce pinch-off at a lower value of current. 6.2.2 Gate Control Pinch-off is reached at a lower value of V D (and therefore a lower I D ) when a negative gate bias is applied. (see next page)
13
(from Eq. 5-57) (V p at pinch-off: a positive number, V G is zero or negative) Pinch-off is reached at a lower value of V D (and therefore a lower I D ) when a negative gate bias is applied.
14
6.2.2 Current Voltage Characteristics Differential volume of the neutral channel material: Z2h(x)dx Resistivity: Current I does not change with distance along the channel The half-width of the channel at point x depends on V Gx G o is the conductance of the channel for negligible W(x), i.e., with no gate voltage and low values of I D
15
6.2.2 Current Voltage Characteristics Valid only up to pinch-off The saturation current is greatest when V G is zero and becomes smaller as V G is made negative. Experimentally
16
6.2.2 Current Voltage Characteristics Short channel effect Effect of : Electron velocity saturation at high fields may make this assumption invalid (the assumption of G o constant is invalid) Effect of L: The effective channel length decreases as the drain voltage is increased beyond pinch-off. Therefore, the assumption of constant saturation current is not valid for vary short-channel devices.
17
6.1 Transistor Operation 6.2 The Junction FET 6.3 The Metal-Semiconductor FET 6.4 The Metal-Insulator-Semiconductor FET 6.5 The MOS Field-Effect Transistor
18
6.3.1 The GaAs MESFET By using GaAs instead of Si, a higher electron mobility is available. (Appendix III) (require doping)
19
6.3.2 The High Electron Mobility Transistor (HEMT) Modulation doping To grow a thin undoped well (e.g., GaAs) bounded by wider band gap, doped barriers (e.g., AlGaAs). The donors are in the AlGaAs rather than the GaAs, there is no impurity scattering of electrons in the wwll. Modulation doped field-effect transistor (MODFET) High electron mobility transistor (HEMT) 2DEG The donors in the AlGaAs layer are purposely separated from the interface by ~100 Å. The conductivity can be increased by increasing the doping in the channel and thus the carrier concentration. However, increased doping also causes increased scattering by the ionized impurities, which leads to a degradation of mobility.
20
6.3.3 Short Channel Effects The saturated current follows the velocity saturation, and does not require a true pinch-off in the sense of depletion regions meeting at some point in the channel. The saturated current The transconductance g m is essentially constant: The I D -V D curves are more evenly spaced if constant saturation velocity dominates, compared with the V G -dependent spacing for the long-channel constant-mobility case.
21
6.3.3 Short Channel Effects 1.The saturated current follows the velocity saturation, and does not require a true pinch-off in the sense of depletion regions meeting at some point in the channel. Most devices operate with characteristics intermediate between the constant mobility and the constant velocity regimes. Approximation required. 2.Another important short-channel effect is the reduction in effective channel length pinch-off as the drain voltage is increased. This effect is not significant in long-channel devices, since the change in L due to intrusion of the depletion region is a minor fraction of the total channel length. In the short-channel devices, however, the effective channel length can be substantially shortened, leading to a slope in the saturated I-V characteristic that is analogous to the Early (base-width narrowing) effect in BJTs.
22
6.1 Transistor Operation 6.2 The Junction FET 6.3 The Metal-Semiconductor FET 6.4 The Metal-Insulator-Semiconductor FET 6.5 The MOS Field-Effect Transistor
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.