Download presentation
Presentation is loading. Please wait.
Published byAmberlynn Walters Modified over 9 years ago
1
Penn ESE370 Fall2013 -- DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 28: November 15, 2013 Memory Periphery
2
Today Memory Periphery Sensing Driving Decode Penn ESE370 Fall2013 -- DeHon 2
3
Sensing Penn ESE370 Fall2013 -- DeHon 3
4
4 SRAM Memory bit
5
Simulation W access =20 Penn ESE370 Fall2013 -- DeHon 5
6
Sense Small Swings What do we have to worry about? Penn ESE370 Fall2013 -- DeHon 6
7
Sense Small Swings Variation –Shift where inverter trip point is Systematic shifts that effect both lines –“Common mode” noise –E.g. Noise Voltage droop Penn ESE370 Fall2013 -- DeHon 7
8
Two Sense Amps 1.Clocked / Regenerative Feedback 2.Not clocked / Differential Sense Amp Goal: amplify small signal difference reject common mode noise Penn ESE370 Fall2013 -- DeHon 8
9
Differential Sense Amp Goal: –Reject common shift Penn ESE370 Fall2013 -- DeHon 9
10
Warmup What does this do? How do we size transistor? Penn ESE370 Fall2013 -- DeHon 10
11
Voltage Controlled Consider Vctrl as an analog input between 0 and Vdd-Vth What does this do? How does the voltage on V ctrl control operation? Penn ESE370 Fall2013 -- DeHon 11
12
DC Transfer Penn ESE370 Fall2013 -- DeHon 12
13
Idea Control Resistance to control trip point Set trip point based on second line Q: how set Vctrl? Penn ESE370 Fall2013 -- DeHon 13
14
Differential Sense Amp Penn ESE370 Fall2013 -- DeHon 14
15
What does this do? Output when: –In=Gnd? –In=Vdd? –Transfer curve? Penn ESE370 Fall2013 -- DeHon 15
16
“Inverter” Input high –Ratioed like grounded P Input low –Pulls itself up –Until V dd -V TP Penn ESE370 Fall2013 -- DeHon 16
17
DC Transfer Function Penn ESE370 Fall2013 -- DeHon 17
18
Differential Sense Amp Penn ESE370 Fall2013 -- DeHon 18
19
Diffamp Transfer Function in=/in, looks like “inverter” Deliberately low gain in mid region Ideal might be flat? Penn ESE370 Fall2013 -- DeHon 19
20
Differential Sense Amp “Inverter” output controls PMOS for second inverter Sets PMOS operating point –Voltage controlled resistance –Sets trip point Penn ESE370 Fall2013 -- DeHon 20
21
Differential Sense Amp What happens when o /in > in? o /in < in? Penn ESE370 Fall2013 -- DeHon 21
22
Differential Sense Amp View: –Current mirror –Biases where inverter operating Penn ESE370 Fall2013 -- DeHon 22
23
Differential Sense Amp View: – adjusting the pullup load resistance –Changing the trip point for “inverter” Penn ESE370 Fall2013 -- DeHon 23
24
DC Transfer /in with in=0.5V Penn ESE370 Fall2013 -- DeHon 24
25
DC Transfer Various in Penn ESE370 Fall2013 -- DeHon 25
26
DC Transfer Various in What is trip point when: In=0.3V? In=0.4V? In=0.5V? In=0.6V? In=0.7V? Penn ESE370 Fall2013 -- DeHon 26
27
After Inverter Penn ESE370 Fall2013 -- DeHon 27
28
Ramp 50mV Offset Penn ESE370 Fall2013 -- DeHon 28
29
Closeup 50mV Offset Penn ESE370 Fall2013 -- DeHon 29
30
Differential Sense Amp Does need to be sized There is a ratioed logic effect here Penn ESE370 Fall2013 -- DeHon 30
31
Regenerative Feedback Penn ESE370 Fall2013 -- DeHon 31
32
Connect to Column Equalize lines during precharge Penn ESE370 Fall2013 -- DeHon 32
33
Singled-Ended Read Penn ESE370 Fall2013 -- DeHon 33
34
5T SRAM Penn ESE370 Fall2013 -- DeHon 34
35
Single Ended Given same problems –How sense small swing on single-ended case? Penn ESE370 Fall2013 -- DeHon 35
36
Single Ended Need reference to compare against Want to look just like bit line Equalize with bit line Penn ESE370 Fall2013 -- DeHon 36
37
Split Bit Line Split bit-line in half Precharge/equalize both Word in only one half –Only it switches Amplify difference Penn ESE370 Fall2013 -- DeHon 37
38
Open Bit Line Architecture For 1T DRAM Add dummy cells Charge dummy cells to V dd /2 “read” dummy in reference half Penn ESE370 Fall2013 -- DeHon 38
39
Memory Bank Penn ESE370 Fall2013 -- DeHon 39
40
Row Select Penn ESE370 Fall2013 -- DeHon 40
41
Memory Bank Penn ESE370 Fall2013 -- DeHon 41
42
Row Select Logically a big AND –May include an enable for timing in synchronous Penn ESE370 Fall2013 -- DeHon 42 How many transistors (per address bit)?
43
How tall is a row? Side length for cell of size: –1000 2 – 600 2 – 100 2 Penn ESE370 Fall2013 -- DeHon 43
44
44 How tall is an AND? Penn ESE370 Fall2013 -- DeHon 2 6 6 3 2 2 44
45
Row Select How can we do better? –Area –Delay –Match to pitch of memory row Penn ESE370 Fall2013 -- DeHon 45
46
Row Select Compute inversions outside array –Just AND appropriate line (bit or /bit) Penn ESE370 Fall2013 -- DeHon 46
47
Row Select Share common terms Multi-level decode Penn ESE370 Fall2013 -- DeHon 47
48
Row Select Same number of lines Half as many AND inputs inside the row Penn ESE370 Fall2013 -- DeHon 48
49
Row Select: Precharge NAND Penn ESE370 Fall2013 -- DeHon 49
50
Row Select: Precharge NOR Penn ESE370 Fall2013 -- DeHon 50
51
Bus Drivers Penn ESE370 Fall2013 -- DeHon 51
52
Memory Bank Penn ESE370 Fall2013 -- DeHon 52
53
Tristate Driver Penn ESE370 Fall2013 -- DeHon 53
54
Tri-State Drivers Penn ESE370 Fall2013 -- DeHon 54
55
Idea Minimize area of repeated cell Compensate with periphery –Amplification (restoration) Match periphery pitch to cell row/column –Decode –Sensing –Writer Drivers Penn ESE370 Fall2013 -- DeHon 55
56
Admin Monday: in Detkin Lab –Read lab2 assignment before coming to class Tuesday: Proj2 Milestone due Wednesday: Lecture Penn ESE370 Fall2013 -- DeHon 56
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.