Download presentation
Presentation is loading. Please wait.
Published byClarissa Lynch Modified over 9 years ago
1
NanoLab Physics 4970 Spring 2007 TR 14:30-16:20 development funded by a grant from National Science Foundation Nanotechnology Undergraduate Education
2
DNA ~2-1/2 nm diameter Things NaturalThings Manmade MicroElectroMechanical devices 10 -100 m wide Red blood cells Pollen grain Fly ash ~ 10-20 m Atoms of silicon spacing ~tenths of nm Head of a pin 1-2 mm Quantum corral of 48 iron atoms on copper surface positioned one at a time with an STM tip Corral diameter 14 nm Human hair ~ 10-50 m wide Red blood cells with white cell ~ 2-5 m Ant ~ 5 mm The Scale of Things -- Nanometers and More Dust mite 200 m ATP synthase ~10 nm diameter Nanotube electrode Carbon nanotube ~2 nm diameter Nanotube transistor 21 st Century Challenge Combine nanoscale building blocks to make novel functional devices, e.g., a photosynthetic reaction center with integral semiconductor storage The Microworld 0.1 nm 1 nanometer (nm) 0.01 m 10 nm 0.1 m 100 nm 1 micrometer ( m) 0.01 mm 10 m 0.1 mm 100 m 1 millimeter (mm) 1 cm 10 mm 10 -2 m 10 -3 m 10 -4 m 10 -5 m 10 -6 m 10 -7 m 10 -8 m 10 -9 m 10 -10 m Visible The Nanoworld 1,000 nanometers = Infrared Ultraviolet Microwave Soft x-ray 1,000,000 nanometers = Zone plate x-ray “lens” Outermost ring spacing ~35 nm Office of Basic Energy Sciences Office of Science, U.S. DOE Version 03-05-02
4
Nano Nano Nano Nano Nano milli10 -3 Latin micros thousand micro10 -6 Greek micros small nano10 -9 Greek nanos dwarf pico10 -12 Spanish pico small quantity femto10 -15 Danish/Norwegian femten fifteen atto 10 -18 Danish/Norwegian atten eighteen
5
Why Nano? electronics –Nanoelectronic smaller faster transistors –molecular scale electronics build electronic circuits with molecules –quantum computing mechanics –MEMS micro electromechanical systems accelerometers, nano-guitar –NEMS nano electromechanical systems molecular motors
6
Two Different Approaches to Nanofabrication Top ⇨ Down: Start with the big chunk and cut away material to make the what you want. Bottom ⇨ Up: Building what you want by assembling it from small prefabricated units such as atoms and molecules.
7
Today’s Science Fiction Tomorrow’s Technology? Molecular Nanotechnology –Building functional nanostructures by controlling the placement of molecules –Molecular manufacturing molecular assemblers –examples: nanites (Star Trek, etc.) Resources –Foresight Institute (molecular nanotechnology) –Institute for Molecular Manufacturing –Zyvex (molecular nanotechnology) –Mitre Corp (molecular scale electronics)
8
Moore’s Law In 1965 Gordon Moore observed that number of transistors per integrated circuit was growing exponentially with time. Doubling every 2 yrs (approximately) Gordon Moore co-founder of Intel Gordon E. Moore, “Cramming more components onto integrated circuits,” Electronics, 38(8), (19 Apr 1965).
9
Molecular Scale Electronics Molecular Electronic Devices: Can Molecules Perform the Function of Electronic Insulators, Wires and Switches? Individual molecules serve as electronic components.
10
The History of NanoLab NanoLab was first run during the Aug 2003 intersession. Development of NanoLab is funded by the NSF NUE The intent is to provide an introduction to nanotechnology that is accessible at the sophomore level. Does this mean that NanoLab dumbed down? NO. –There are many levels of understanding. Is it necessary to be a motorcycle mechanic to ride a motorcycle? –Students are encouraged to pursue understanding of the material to a level where they are comfortable.
11
What is NanoLab general hands-on experience Nanotechnology beyond the hype –What is actually involved? An introduction to our capabilities at OU NanoLab uses active research facilities. Many of the activities you will do are based on actual ongoing research. TAs have developed and tested the procedures so that they will work in the time allotted.
12
How is NanoLab Graded? (Physics 4970) Attendance Participation Quizzes/Homework Lab reports/presentations (?) every student/group should keep a lab notebook
13
NanoLab Activities Electroluminescent Panels (ACTFEL) Atomic scale structure: Crystals & surfaces nanoparticle optics (microscopy, light scattering, absorption) Microscopy (optical & electron, resolution, diffraction limit) Scanning probe microscopy (AFM, STM, nanolithography) X-ray diffraction from ultra fine powders surface modification (single molecule thick layers monolayers) microcontact printing & pattern transfer TiO 2 solar cell AAO templated growth Microfluidics Carbon Nanotubes (?) Field trip to Zyvex & TI Brownian motion, molecular ratchets, and stochastic motors Single nanoparticle microscopy
14
What Would YOU Like to do? NanoLab depends on YOU Please take tell us the following (on paper) List your interests. What are some topics you would really like to cover in NanoLab? Do you have experience with techniques that would benefit NanoLab?
15
The Future of NanoLab The future depends on you We need to hear from you. What are you interests. What did you like? What did you not? Would you recommend NanoLab to your friends? Should NanoLab be repeated?
16
Useful Approximate Numbers distance between atoms ~3Å ~ 10 –7.5 cm (3 x 10 –8 cm ~ 10 0.5 x 10 –8 cm = 10 –7.5 cm) # atoms/cm ~ 10 7.5 # atoms/cm 2 ~ (10 7.5 ) 2 = 10 15 # atoms/cm 3 ~ (10 7.5 ) 3 = 10 22.5
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.