Presentation is loading. Please wait.

Presentation is loading. Please wait.

Introduction 1 Lecture 23 Link Layer (Error Detection/Correction) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science.

Similar presentations


Presentation on theme: "Introduction 1 Lecture 23 Link Layer (Error Detection/Correction) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science."— Presentation transcript:

1 Introduction 1 Lecture 23 Link Layer (Error Detection/Correction) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science & Engineering Department Fall 2011 CPE 400 / 600 Computer Communication Networks

2 5: DataLink Layer5-2 Chapter 5: The Data Link Layer Our goals: r understand principles behind data link layer services: m error detection, correction m sharing a broadcast channel: multiple access m link layer addressing m reliable data transfer, flow control: done! r instantiation and implementation of various link layer technologies

3 5: DataLink Layer5-3 Link Layer r 5.1 Introduction and services r 5.2 Error detection and correction r 5.3Multiple access protocols r 5.4 Link-layer Addressing r 5.5 Ethernet r 5.6 Link-layer switches r 5.7 PPP r 5.8 Link virtualization: MPLS r 5.9 A day in the life of a web request

4 5: DataLink Layer5-4 Link Layer: Introduction Some terminology: r hosts and routers are nodes r communication channels that connect adjacent nodes along communication path are links m wired links m wireless links m LANs r layer-2 packet is a frame, encapsulates datagram data-link layer has responsibility of transferring datagram from one node to adjacent node over a link

5 5: DataLink Layer5-5 Link layer: context r datagram transferred by different link protocols over different links: m e.g., Ethernet on first link, frame relay on intermediate links, 802.11 on last link r each link protocol provides different services m e.g., may or may not provide rdt over link transportation analogy r trip from Princeton to Lausanne m limo: Princeton to JFK m plane: JFK to Geneva m train: Geneva to Lausanne r tourist = datagram r transport segment = communication link r transportation mode = link layer protocol r travel agent = routing algorithm

6 5: DataLink Layer5-6 Link Layer Services r framing, link access: m encapsulate datagram into frame, adding header, trailer m channel access if shared medium m “MAC” addresses used in frame headers to identify source, dest different from IP address! r reliable delivery between adjacent nodes m we learned how to do this already (chapter 3)! m seldom used on low bit-error link (fiber, some twisted pair) m wireless links: high error rates Q: why both link-level and end-end reliability?

7 5: DataLink Layer5-7 Link Layer Services (more) r flow control: m pacing between adjacent sending and receiving nodes r error detection: m errors caused by signal attenuation, noise. m receiver detects presence of errors: signals sender for retransmission or drops frame r error correction: m receiver identifies and corrects bit error(s) without resorting to retransmission r half-duplex and full-duplex m with half duplex, nodes at both ends of link can transmit, but not at same time

8 5: DataLink Layer5-8 Where is the link layer implemented? r in each and every host r link layer implemented in “adaptor” (aka network interface card NIC) m Ethernet card, PCMCI card, 802.11 card m implements link, physical layer r attaches into host’s system buses r combination of hardware, software, firmware controller physical transmission cpu memory host bus (e.g., PCI) network adapter card host schematic application transport network link physical

9 5: DataLink Layer5-9 Adaptors Communicating r sending side: m encapsulates datagram in frame m adds error checking bits, rdt, flow control, etc. r receiving side m looks for errors, rdt, flow control, etc m extracts datagram, passes to upper layer at receiving side controller sending host receiving host datagram frame

10 5: DataLink Layer5-10 Link Layer r 5.1 Introduction and services r 5.2 Error detection and correction r 5.3Multiple access protocols r 5.4 Link-layer Addressing r 5.5 Ethernet r 5.6 Link-layer switches r 5.7 PPP r 5.8 Link virtualization: MPLS r 5.9 A day in the life of a web request

11 5: DataLink Layer5-11 Error Detection EDC= Error Detection and Correction bits (redundancy) D = Data protected by error checking, may include header fields Error detection not 100% reliable! protocol may miss some errors, but rarely larger EDC field yields better detection and correction otherwise

12 5: DataLink Layer5-12 Parity Checking Single Bit Parity: Detect single bit errors Two Dimensional Bit Parity: Detect and correct single bit errors

13 5: DataLink Layer5-13 Internet checksum (review) Sender: r treat segment contents as sequence of 16-bit integers r checksum: addition (1’s complement sum) of segment contents r sender puts checksum value into UDP checksum field Receiver: r compute checksum of received segment r check if computed checksum equals checksum field value: m NO - error detected m YES - no error detected. But maybe errors nonetheless? Goal: detect “errors” (e.g., flipped bits) in transmitted packet (note: used at transport layer only)

14 5: DataLink Layer5-14 Checksumming: Cyclic Redundancy Check r view data bits, D, as a binary number r choose r+1 bit pattern (generator), G r goal: choose r CRC bits, R, such that m exactly divisible by G (modulo 2) m receiver knows G, divides by G. If non-zero remainder: error detected! m can detect all burst errors less than r+1 bits r widely used in practice (Ethernet, 802.11 WiFi, ATM)

15 5: DataLink Layer5-15 CRC Example Want: D. 2 r XOR R = nG equivalently: D. 2 r = nG XOR R equivalently: if we divide D. 2 r by G, want remainder R R = remainder[ ] D.2rGD.2rG


Download ppt "Introduction 1 Lecture 23 Link Layer (Error Detection/Correction) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science."

Similar presentations


Ads by Google