Presentation is loading. Please wait.

Presentation is loading. Please wait.

Geology of the bright sight of the Moon

Similar presentations


Presentation on theme: "Geology of the bright sight of the Moon"— Presentation transcript:

1 Geology of the bright sight of the Moon
Group members: Tomislav Šklebar Mimoza Naseska Anton Perkov Project leader: Maja Hren

2 Something about the Moon
The Moon is Earth's only known natural satellite. The prevailing hypothesis today is that the Earth–Moon system formed as a result of a giant impact. The Moon is Earth's only known natural satellite,[nb 4][6] the fifth largest satellite in the Solar System. It is the largest natural satellite of a planet in the Solar System relative to the size of its primary, having a quarter the diameter of Earth and1⁄81 its mass.[nb 5] The Moon is the second densest satellite after Io, a satellite of Jupiter. It is in synchronous rotation with Earth, always showing the same face; the near side is marked with dark volcanic maria among the bright ancient crustal highlands and prominent impact craters. It is the brightest object in the sky after the Sun, although its surface is actually very dark, with a similar reflectance to coal. Several mechanisms have been proposed for the Moon's formation 4.527 ± billion years ago,[nb 6] some 30–50 million years after the origin of the Solar System.[11] These include the fission of the Moon from the Earth's crust throughcentrifugal forces,[12] which would require too great an initial spin of the Earth,[13] the gravitational capture of a pre-formed Moon,[14] which would require an unfeasibly extended atmosphere of the Earth to dissipate the energy of the passing Moon,[13] and the co-formation of the Earth and the Moon together in the primordial accretion disk, which does not explain the depletion of metallic iron in the Moon.[13] These hypotheses also cannot account for the high angular momentum of the Earth–Moon system.[15] The prevailing hypothesis today is that the Earth–Moon system formed as a result of a giant impact: a Mars-sized body hit the nearly formed proto-Earth, blasting material into orbit around the proto-Earth, which accreted to form the Moon.[16]Giant impacts are thought to have been common in the early Solar System. Computer simulations modelling a giant impact are consistent with measurements of the angular momentum of the Earth–Moon system, and the small size of the lunar core; they also show that most of the Moon came from the impactor, not from the proto-Earth.[17] However, meteorites show that other inner Solar System bodies such as Mars and Vesta have very different oxygen and tungsten isotopiccompositions to the Earth, while the Earth and Moon have near-identical isotopic compositions. Post-impact mixing of the vaporized material between the forming Earth and Moon could have equalized their isotopic compositions,[18] although this is debated.[19] The large amount of energy released in the giant impact event and the subsequent reaccretion of material in Earth orbit would have melted the outer shell of the Earth, forming a magma ocean.[20][21] The newly formed Moon would also have had its own lunar magma ocean; estimates for its depth range from about 500 km to the entire radius of the Moon.[2 The Moon is a differentiated body: it has a geochemically distinct crust, mantle, and core. The moon has a solid iron-rich inner core with a radius of 240 kilometers and a fluid outer core primarily made of liquid iron with a radius of roughly 300 kilometers. Around the core is a partially molten boundary layer with a radius of about 500 kilometers.[23] This structure is thought to have developed through the fractional crystallization of a global magma ocean shortly after the Moon's formation 4.5 billion years ago.[24]Crystallization of this magma ocean would have created a mafic mantle from the precipitation and sinking of the minerals olivine, clinopyroxene, and orthopyroxene; after about three-quarters of the magma ocean had crystallised, lower-density plagioclaseminerals could form and float into a crust on top.[25] The final liquids to crystallise would have been initially sandwiched between the crust and mantle, with a high abundance of incompatible and heat-producing elements.[1] Consistent with this, geochemical mapping from orbit shows the crust is mostly anorthosite,[5] and moon rock samples of the flood lavas erupted on the surface from partial melting in the mantle confirm the mafic mantle composition, which is more iron rich than that of Earth.[1] Geophysical techniques suggest that the crust is on average ~50 km thick.[1] The Moon is the second densest satellite in the Solar System after Io.[26] However, the inner core of the Moon is small, with a radius of about 350 km or less;[1] this is only ~20% the size of the Moon, in contrast to the ~50% of most other terrestrial bodies. Its composition is not well constrained, but it is probably metallic iron alloyed with a small amount of sulphur and nickel; analyses of the Moon's time-variable rotation indicate that it is at least partly molten.[27] The Moon is a differentiated body: it has a geochemically distinct crust, mantle, and core.

3 Surface geology Chemical composition of the lunar surface regolith (derived from crustal rocks) Compound Formula Composition (wt %) Maria Highlands silica SiO2 45.4% 45.5% alumina Al2O3 14.9% 24.0% lime CaO 11.8% 15.9% iron(II) oxide FeO 14.1% 5.9% magnesia MgO 9.2% 7.5% titanium dioxide TiO2 3.9% 0.6% sodium oxide Na2O Total 99.9% 100.0% The Lunar surface is made out of two different kinds of rocks: basalt and anorthosite. The maria are composed predominantly of basalt, whereas the highland regions are iron-poor and composed primarily of anorthosite, a rock composed primarily of calcium-rich plagioclase feldspar. Another significant component of the crust are the igneous Mg-suite rocks, such as the troctolites,norites, and KREEP-basalts. These rocks are believed to be genetically related to the petrogenesis of KREEP. Composition of the maria The main characteristics of the basaltic rocks with respect to the rocks of the lunar highlands is that the basalts contain higher abundances of olivine and pyroxene, and less plagioclase. They are more rich in iron than terrestrial basalts, and also have lower viscosities. Some of them have high abundances of a ferro-titanic oxide called ilmenite. Since the first sampling of rocks contained a high content of ilmenite and other related minerals, they received the name of "high titanium" basalts. The Apollo 12 mission returned to Earth with basalts of lower titanium concentrations, and these were dubbed "low titanium" basalts. Subsequent missions, including the Soviet unmanned probes, returned with basalts with even lower concentrations, now called "very low titanium" basalts. The Clementine space probe returned data showing that the mare basalts possess a continuum in titanium concentrations, with the highest concentration rocks being the least abundant.

4 Surface geology Pyroxene Plagioclase XY(Si,Al)2O6
NaAlSi3O8 / CaAl2Si2O8 Ilmenite (FeTiO3) Olivine (Mg, Fe)2SiO4 Ilmenite is a weakly magnetic titanium-iron oxide mineral which is iron-black or steel-gray. It is a crystalline iron titanium oxide (FeTiO3). It crystallizes in the trigonal system, and it has the same crystal structure as corundum and hematite Ilmenite is commonly recognised in altered igneous rocks by the presence of a white alteration product, the pseudo-mineral leucoxene. Often ilmenites are rimmed with leucoxene, which allows ilmenite to be distinguished from magnetite and other iron-titanium oxides. The example shown in the image at right is typical of leucoxene-rimmed ilmenite. The mineral olivine (when gem-quality also called peridot) is a magnesium iron silicate with the formula (Mg,Fe)2SiO4. It is a common mineral in the Earth's subsurface but weathers quickly on the surface. The ratio of magnesium and iron varies between the two endmembers of the solid solution series: forsterite (Mg-endmember) and fayalite (Fe-endmember). Compositions of olivine are commonly expressed as molar percentages of forsterite (Fo) and fayalite (Fa) (e.g., Fo70Fa30). Forsterite has an unusually high melting temperature at atmospheric pressure, almost 1900 °C, but the melting temperature of fayalite is much lower (about 1200 °C). The melting temperature varies smoothly between the two endmembers, as do other properties. Olivine incorporates only minor amounts of elements other than oxygen, silicon, magnesium and iron. Manganese and nickel commonly are the additional elements present in highest concentrations. Olivine gives its name to the group of minerals with a related structure (the olivine group) which includes tephroite (Mn2SiO4), monticellite (CaMgSiO4) and kirschsteinite (CaFeSiO4). The pyroxenes are a group of important rock-forming inosilicate minerals found in many igneous and metamorphic rocks. They share a common structure consisting of single chains of silica tetrahedra and they crystallize in the monoclinic andorthorhombic systems. Pyroxenes have the general formula XY(Si,Al)2O6 (where X represents calcium, sodium, iron+2 and magnesium and more rarely zinc, manganese and lithium and Y represents ions of smaller size, such as chromium, aluminium, iron+3, magnesium, manganese, scandium, titanium, vanadium and even iron+2). Although aluminium substitutes extensively for silicon in silicates such as feldspars and amphiboles, the substitution occurs only to a limited extent in most pyroxenes. The name pyroxene comes from the Greek words for fire (πυρ) and stranger (ξένος). Pyroxenes were named this way because of their presence in volcanic lavas, where they are sometimes seen as crystals embedded in volcanic glass; it was assumed they were impurities in the glass, hence the name "fire strangers". However, they are simply early-forming minerals that crystallized before the lava erupted. The upper mantle of Earth is composed mainly of olivine and pyroxene. A piece of the mantle is shown at right (orthopyroxene is black, diopside (containing chromium) is bright green, and olivine is yellow-green) and is dominated by olivine, typical for common peridotite. Pyroxene and feldspar are the major minerals in basalt and gabbro. In reflected light it may be distinguished from magnetite by more pronounced reflection pleochroism and a brown-pink tinge. Ilmenite is weakly magnetic, with a weak response to a hand magnet. Plagioclase is an important series of tectosilicate minerals within the feldspar family. Rather than referring to a particular mineral with a specific chemical composition, plagioclase is a solid solution series, more properly known as the plagioclase feldspar series (from the Greek "oblique fracture", in reference to its two cleavage angles). This was first shown by the German mineralogist Johann Friedrich Christian Hessel (1796–1872) in The series ranges from albite to anorthiteendmembers (with respective compositions NaAlSi3O8 to CaAl2Si2O8), where sodium and calcium atoms can substitute for each other in the mineral's crystal lattice structure. Plagioclase in hand samples is often identified by its polysynthetic twinning or 'record-groove' effect. Plagioclase is a major constituent mineral in the Earth's crust, and is consequently an important diagnostic tool in petrology for identifying the composition, origin and evolution of igneous rocks. Plagioclase is also a major constituent of rock in the highlands of the Earth's moon.

5 Surface geology The Moon surface is made out of two tipes of rocks
Basalts Anorthosite Mineral composition of highland rocks Plagioclase Pyroxene Olivine Ilmenite Anorthosite 90% 5% 0% Norite 60% 35% Troctolite The mineralogy of basalt is characterized by a preponderance of calcic plagioclase feldspar and pyroxene. Olivine can also be a significant constituent. Accessory minerals present in relatively minor amounts include iron oxides and iron-titanium oxides, such as magnetite, ulvospinel, and ilmenite. Because of the presence of such oxide minerals, basalt can acquire strong magnetic signatures as it cools, and paleomagnetic studies have made extensive use of basalt. The ferroan anorthosite suite consists almost exclusively of the rock anorthosite (>90% calcic plagioclase) with less common anorthositic gabbro (70-80% calcic plagioclase, with minor pyroxene). The ferroan anorthosite suite is the most common group in the highlands, and is inferred to represent plagioclase flotation cumulates of the lunar magma ocean, with interstitial mafic phases formed from trapped interstitial melt or rafted upwards with the more abundant plagioclase framework. The plagioclase is extremely calcic by terrestrial standards, with molar anorthite contents of 94-96% (An94-96). This reflects the extreme depletion of the bulk moon in alkalis (Na, K) as well as water and other volatile elements. In contrast, the mafic minerals in this suite have low Mg/Fe ratios that are inconsistent with calcic plagioclase compositions. Ferroan anorthosites have been dated using the internal isochron method at "circa" 4.4 Ga. The magnesian suite (or "mg suite") consists of dunites (>90% olivine), troctolites (olivine-plagioclase), and gabbros (plagioclase-pyroxene) with relatively high Mg/Fe ratios in the mafic minerals and a range of plagioclase compositions that are still generally calcic (An86-93). These rocks represent later intrusions into the highlands crust (ferroan anorthosite) at round Ga. An interesting aspect of this suite is that analysis of the trace element content of plagioclase and pyroxene require equilibrium with aKREEP-rich magma, despite the refractory major element contents. The alkali suite is so-called because of its high alkali content -- for moon rocks. The alkali suite consists of alkali anorthosites with relatively sodic plagioclase (An70-85), norites (plagioclasse-orthopyroxene), and gabbronorites (plagioclase-clinopyroxene-orthopyroxene) with similar plagioclase compositions and mafic minerals more iron-rich than the magnesian suite. The trace element contents of these minerals also indicates a KREEP-rich parent magma. The alkali suite spans an age range similar to the magnesian suite. Lunar granites are relatively rare rocks that include diorites, monzodiorites, and granophyres. They consist of quartz, plagioclase, orthoclase or alkali feldspar, rare mafics (pyroxene), and rare zircon. The alkali feldspar may have unusual compositions unlike any terrestrial feldspar, and they are often Ba-rich. These rocks apparently form by the extreme fractional crystallization of magnesian suite or alkali suite magmas, although liquid immiscibility may also play a role. U-Pb date of zircons from these rocks and from lunar soils have ages of Ga, more or less the same as the magnesian suite and alkali suite rocks. In the 1960s, NASA researcher John A. O'Keefe and others linked lunar granites with tektites found on Earth although many researchers refuted these claims. According to one study, a portion of lunar sample has a chemistry that closely resembles javanite tektites found on Earth. In tholeiitic basalt, pyroxene (augite and orthopyroxene or pigeonite) and calcium-rich plagioclase are common phenocryst minerals. Olivine may also be a phenocryst, and when present, may have rims of pigeonite. The groundmass contains interstitialquartz or tridymite or cristobalite. Olivine tholeiite has augite and orthopyroxene or pigeonite with abundant olivine, but olivine may have rims of pyroxene and is unlikely to be present in the groundmass. Alkali basalts typically have mineral assemblages that lack orthopyroxene but contain olivine. Feldspar phenocrysts typically are labradorite to andesine in composition. Augite is rich in titanium compared to augite in tholeiitic basalt. Minerals such as alkali feldspar, leucite, nepheline, sodalite, phlogopite mica, and apatite may be present in the groundmass. Mineral composition of mare basalts Plagioclase Pyroxene Olivine Ilmenite High titanium content 30% 54% 3% 18% Low titanium content 60% 5% Very low titanium content 35% 55% 8% 2%

6 Our method for determing the mineralogy of the Lunar surface
Taking photos of the visible sight of the Moon trough the filters Meade LX200 GPS Canon 20D Lumicon filters

7 Our method for determing the mineralogy of the Lunar surface
Taking photos of the visible sight of the Moon trough the filters Parks red No.25 Lumicon Oxygen III Lumicon Orange No.21 6,7 cm 6,8 cm Without filters Lumicon deep-sky Lumicon No.12 deep yellow

8 Our method for determing the mineralogy of the Lunar surface
Determing the filter spectra

9 Our method for determing the mineralogy of the Lunar surface
Determing the filter spectra Lumicon Oxygen III Parks red No.25 Lumicon Orange No.21 Lumicon No.12 deep yellow

10 Our method for determing the mineralogy of the Lunar surface
Image processing First step in image processing is alligning the photos that have been taken with same filter in the same night. After allignment we use Registax which interface is shown in the picture to stack the taken photos. Alligning and stacking

11 Our method for determing the mineralogy of the Lunar surface
Image processing We used Photoshop for image processing, exactly for colour saturation of images A beam of white light contains every color.  Therefore, in terms of light, every color combined equals white.  When an object appears to be white, it is because the object is reflecting every single color towards us.  When an object appears to be the color red is actually absorbing every color except for the red, which it reflects.  At the other extreme is an object that is black.  This is absorbing all of the colors in the white light and reflecting none.  The term saturation comes into play when measuring the amount of color being reflected.  If an object absorbs every color except blue, for instance, then that blue is considered to be highly saturated.  If,  however, the object absorbs some of the blue along with everything else, then the blue is less saturated.  When all of this is brought back to the context of photography it can be a little trickier; still, the same basic idea is applied.  A photo with very dull colors is considered to have low saturation.  Further, the more blacks and grays that appear in the photo, the less saturated it is. 

12 Our method for determing the mineralogy of the Lunar surface
Image processing Picture wthout filter minus yellow filter Picture without filter minus deep sky Picture without filter minus orange filter Picture without filter minus oxygen III Picture without filter minus red filter

13 Conclusion and comparison Mineral composition of highland rocks
Plagioclase detection We have detected plagioclase by substraction of colored image and oxygen 3 filer. It blocks wavelenghts at aproximately 500 nm and by the Mineral composition of highland rocks Plagioclase Pyroxen e Olivine Ilmenite Anorthosit e 90% 5% 0% Norite 60% 35% Troctolite

14 Conclusion and comparison Metal rich basalts Ti>7% Fe>15%
Metal poor basalts Ti<2% Fe<10% Impact ejecta Our image NASA’s image

15 We have learned about… Astrophotography - working with telescope
- image processing Visible spectra - complementary colores - spectroscopy - Absorption lines Mineralogy - Lunar mineralogy - mineral properties - composition and distribution of rocks on the Lunar surface

16 Thank you for your attention!


Download ppt "Geology of the bright sight of the Moon"

Similar presentations


Ads by Google