Download presentation
Presentation is loading. Please wait.
Published byCarmella Holt Modified over 9 years ago
1
18 Species Diversity in Communities
2
18 Species Diversity in Communities Resource Partitioning Nonequilibrium Theories The Consequences of Diversity Case Study Revisited Connections in Nature: Barriers to Biofuels: The Plant Cell Wall Conundrum
3
Introduction This chapter focuses on species diversity at the local scale, and also on two important questions: What are the factors that control species diversity within communities? What is the function of this species diversity within communities?
4
Community Membership All of the above control “membership” in the community. Concept 18.1: Species richness differs among communities due to variation in regional species pools, abiotic conditions, and species interactions.
5
Community Membership There are two schools of thought on how species coexist in a community: Equilibrium theory—ecological and evolutionary compromises lead to resource partitioning. Nonequilibrium theory—fluctuating conditions keep dominant species from monopolizing resources.
6
Resource Partitioning Resource partitioning—competing species are more likely to coexist when they use resources in different ways. Concept 18.2: Resource partitioning among the species in a community reduces competition and increases species richness.
7
Resource Partitioning In a simple model of resource partitioning, each species’ resource use falls on a spectrum of available resources. Figure 18.7 A Resource Partitioning
8
Figure 18.7 B, C, D Resource Partitioning
9
Figure 18.8 Resource Partitioning by Warblers
10
Nonequilibrium Theories Disturbance, stress, or predation can prevent competitive exclusion, and coexistence will be maintained. Concept 18.3: Nonequilbrium processes such as disturbance, stress, and predation can mediate resource availability, thus affecting species interactions and coexistence.
11
Figure 18.12 The Outcome of Competition under Equilibrium versus Nonequilibrium Conditions
12
Nonequilibrium Theories Robert Paine (1966) studied competitive exclusion in the rocky intertidal zone. Pisaster on the mussel Mytilus californianus Paine excluded Pisaster Pisaster = diversity was higher No Pisaster = more Mytilus b/c it outcompeted other species
13
Nonequilibrium Theories Paine’s work led to the intermediate disturbance hypothesis (Connell, 1978): Species diversity should be highest at intermediate levels of disturbance. Low disturbance = competitive species dominate High disturbance = many species can not survive
14
Figure 18.14 The Intermediate Disturbance Hypothesis
15
Figure 18.15 A Test of the Intermediate Disturbance Hypothesis – Sousa’s experiment
16
Nonequilibrium Theories Competitive displacement—growth rate of the strongest competitors in a community.
17
Nonequilibrium Theories At low levels of disturbance, competition reduces diversity. At intermediate levels, species that have positive effects are released from competition and can increase diversity. At high levels, positive interactions are common and help to increase diversity.
18
Nonequilibrium Theories The above theories assume an underlying competitive hierarchy. What if species have equivalent interaction strengths? The lottery model emphasizes the role of chance. It assumes that resources are captured at random by recruits from a larger pool of potential colonists.
19
Nonequilibrium Theories Sale (1977) looked at patterns of occupation of new sites by three fish species, and found it to be random.
20
Figure 18.20 The Lottery Model (Part 2)
21
Figure 18.20 The Lottery Model (Part 1)
22
Nonequilibrium Theories Relevant in diverse communities where species niches overlap. Less important in communities where species have less overlap and greater gaps in resource use and interactions.
23
The Consequences of Diversity Species diversity is correlated to certain functions in a community, e.g. primary productivity, soil fertility, resistance to disturbance, speed of recovery (resilience). Concept 18.4: Experiments show that species diversity is positively related to community function.
24
The Consequences of Diversity Species richness is positively related to community stability—the tendency of a community to remain the same in structure and function.
25
Figure 18.21 A Species Diversity and Community Function – Tilman and Downing (1994)
26
The Consequences of Diversity That was observational data. How could an experiment be designed to test the idea that species richness equals community stability? Using a pool of 24 species, they set up plots with different numbers of species, but the same number of individuals.
27
Figure 18.21 B Species Diversity and Community Function
28
The Consequences of Diversity Four hypotheses on mechanisms that might explain these relations. Two variables in all the hypotheses: degree of overlap in the ecological function of species variation in the strength of the ecological functions of species
29
Figure 18.22 A Hypotheses on Species Richness and Community Function
30
The Consequences of Diversity 1. Complementarity hypothesis: As species richness increases, there will be a linear increase in community function. Each species added has an equal effect.
31
Figure 18.22 B Hypotheses on Species Richness and Community Function
32
The Consequences of Diversity 2. Redundancy hypothesis: The functional contribution of additional species reaches a threshold. As more species are added, there is overlap in their function, or redundancy among species.
33
Figure 18.22 C Hypotheses on Species Richness and Community Function
34
The Consequences of Diversity 3. Driver and passenger hypothesis: Strength of ecological function varies greatly among species. “Driver” species have a large effect, “passenger” species have a minimal effect. Addition of driver and passenger species to a community will therefore have unequal effects on community function.
35
Figure 18.22 D Hypotheses on Species Richness and Community Function
36
The Consequences of Diversity 4. Driver and passenger with overlap: Could be overlap between driver and passenger functions.
37
Figure 18.22 E Hypotheses on Species Richness and Community Function
38
The Consequences of Diversity Who cares? These models can predict (sort of) future community responses to loss (extinction) and gain (invasion) of species via human activities.
39
Figure 18.23 Biofuel Comparisons LIHD = Low input, high diversity
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.