Presentation is loading. Please wait.

Presentation is loading. Please wait.

Su Houng Lee – (ExHIC coll.) 1. Recent findings of “Multiquark states” 2. Statistical vs Coalescence model for hadron production 3. Exotic production in.

Similar presentations


Presentation on theme: "Su Houng Lee – (ExHIC coll.) 1. Recent findings of “Multiquark states” 2. Statistical vs Coalescence model for hadron production 3. Exotic production in."— Presentation transcript:

1 Su Houng Lee – (ExHIC coll.) 1. Recent findings of “Multiquark states” 2. Statistical vs Coalescence model for hadron production 3. Exotic production in HIC 4. Summary Exotics from Heavy Ion Collision 1

2 2 I: Recent findings of “Multiquark states”

3 3 - 2003 - X(3872) - 2013 -

4 4 - 2007 - - 2014 - Spin parity = 1+ Z(4430) G=+  will look at C=-

5 5 - 2013 - BESIII Z(3900) Probably the same Quantum Number as Z(4430) Hence,

6 Width of 6 - A1(1260)   - Z(3900)  J/  - Z(4430)   ‘  A V   Although quark content is [(cu)(cd)], overlap is very small

7 7 c c q q 12 34 Quark wave function for Tetraquark - wave and spin 1 - Woosung Park (Thesis) - Color Spin Color singlet Spin 1 quark antiquark

8 8 c c q q 12 34 Quark wave function for s-wave S=1 Tetraquark (Park,SHL14) C=+ C=- Color Spin

9 9 Hamiltonian Using Brink, Stancu 98  Ground state of C=+ (Woosung Park, SHL 14) Or

10 10  State with C=- (Woosung Park, SHL 14)  Or Z(4430) and Z(3900) are molecular states: Ground state  Or Z(4430), X(3872) can be mixture of tetraquark and molecule Navara, Nielsen, Lee, Phys. Rept (11)

11 11 q q q q Why only heavy tetraquarks ?? (qq) vs (qq) attraction  Introducing c c q q c q c q

12 12 Tetra-quark – hadronic weak decay modes 1+1+ ud cc u d c c  0-0- 1-1- - Binding against decay = - 79.3 MeV Previous works on Tcc Z. Zouzou, B. Silverstre-Brac, C. Gilgnooux, J Richard (86), D. Janc, M. Rosina (04), Y. Cui, S. L. Zhu (07) QCD sum rules: F Navarra, M. Nielsen, SHLee, PLB 649, 166 (2007) simple diquark: SHL, S. Yasui, W.Liu, C Ko EPJ C54, 259 (2008), SHL, S. Yasui: EPJ C (09) SHL, S Yasui, W Liu, C Ko (08)

13 13 Question 1: Are X(3872), Z(3900),Z(4430) molecular states or multiquark states Question 2: Where can we find flavor exotic multiquark states  Answer for both 1 and 2: From HIC

14 Normal meson TetraquarkMolecule Geometrical configuration 14 uu u d u d u u u d Normal meson, Tetraquark and Molecule

15 15 Naïve Bag Model for Multiquark states uu u d u d

16 16 II: Statistical vs Coalescence model for Hadron production in Heavy Ion Collision -Production of hadrons -Production of light nuclei

17 17 u d c d u  c u p   C a c d  b G a/p G b/  dd D C/c X Hadron production in ( p+   C+X ) collision

18 18 T>Tc T=Tc  1 fm/c 5 fm/c 7 fm/c 17 fm/c QGP T H : Hadronization Hadron phase T F : Freezeout Hadronization and freezeout in Heavy Ion Collision Hadron Multiquark formation Light nuclei Molecular structure formation

19 19 Statistical Model for Hadron Yield in HIC (PB Munzinger, Stachel, Redlich) Freezeout points

20 20 Quark number scaling of v2 P T dependence of ratio v4 Ko et al d u d u u s d c d u u d s c c c d u M Coalescence model

21 21 Suppression of p-wave resonance (Muller and Kadana En’yo) Coalescence model = Statistical model + overlap d u d u u s d c d u u d s c c c d u M Hadron production near phase bounday (T H )

22 22 RHIC Statistical Model for light Nuclei RHIC/STAR antimatter Molecule and light nuclei production near freezeout (T F )

23 23 T>Tc T=Tc  1 fm/c 5 fm/c 7 fm/c 17 fm/c QGP T H : Hadronization Hadron phase T F : Freezeout S/N is conserved (Siemens, Kapusta 79) Hadronic phase and Deuteron formation in Heavy Ion Collision V H : Hadronization Volume V F : Freezeout Volume

24 24 Success of Coalescence model But Production of multiquark states are suppressed d u d u u s d c d u u d s c c c u d u d u Tetraquark configuration [overlap]<<1 Normal meson [overlap]=1 d d u d u d u d u d d d

25 25 d u d u u s d s d d d u d u u s d s u u u d u s Tetraquark configuration [overlap]<<1 Molecular configuration: [overlap]=1 d Normal meson [overlap]=1 d d u Hadron production through coalescence u d uu u d u u u d u d d u d

26 26 III: Heavy Exotics from Heavy Ion Collision

27 27  large number of c, b quark production  Vertex detector: weakly decaying exotics : FAIR 10 4 D 0 /month, LHC 10 5 D 0 /month New perspective of Hadron Physics from Heavy Ion Collision T cc /D > 0.34 x 10 -4 RHIC > 0.8 x 10 -4 LHC  T cc production

28 28  Model central rapidity, central collision  Introduce charm fugacity LHC 10 5 D 0 /month Details of coalescence model calculation (ExHIC PRL, PRC 2011)  Coalescence model model and Wigner function  Parameters to fit normal hadron production including resonance feedown from statistical model

29 29  Hadron coalescence

30 30 Expectations [overlap] at LHC Fachini [STAR]

31 31 ExHIC (2011): multiquark/molecule candidates - yield

32 32 2.Measuring X(3872) or Z(3900)  J/  +  from heavy ion collision can discriminate between a molecular structure and multiquark configuration. 3. Heavy multiquark states + Exotics can be observed at LHC Summary 1. Compact multiquark configurations are harder to form from heavy ion collision.  f 0 measurement suggest that it can not be a pure multiquark structure.

33 33 Deuteron production [Coalescence at T F (125MeV) ] V F : Freezeout Volume T F : Freezeout Temp V (fm 3 )V D (T) (fm 3 )N DeuteronTriton N stat (T H ) 19080.7300.250.0014 N coal (T F )1132216150.240.0014 V H T H : Hadronization V parameterization:.Chen, Greco, Ko, SHL, Liu 04


Download ppt "Su Houng Lee – (ExHIC coll.) 1. Recent findings of “Multiquark states” 2. Statistical vs Coalescence model for hadron production 3. Exotic production in."

Similar presentations


Ads by Google