Presentation is loading. Please wait.

Presentation is loading. Please wait.

Su Houng Lee – (ExHIC coll.) 1. Recent findings of “Multiquark states” + several comments 2. Statistical vs Coalescence model for hadron production 3.

Similar presentations


Presentation on theme: "Su Houng Lee – (ExHIC coll.) 1. Recent findings of “Multiquark states” + several comments 2. Statistical vs Coalescence model for hadron production 3."— Presentation transcript:

1 Su Houng Lee – (ExHIC coll.) 1. Recent findings of “Multiquark states” + several comments 2. Statistical vs Coalescence model for hadron production 3. Exotic production in HIC 4. Summary Exotics from Heavy Ion Collision 1

2 2 I: Recent findings of “Multiquark states”

3 3 - 2003 - X(3872) - 2013 -

4 4 - 2007 - - 2014 - Spin parity = 1+ Z(4430) G=+  will look at C=-

5 5 - 2013 - BESIII Z(3900) Probably the same Quantum Number as Z(4430) Hence, Note, Oct/2014 Belle observed Z(4430), Z(4200) from decay

6 Width of 6 - A1(1260)   - Z(3900)  J/  - Z(4430)   ‘  A V   Although quark content is [(cu)(cd)], overlap is very small

7 7 c c q q 12 34 Quark wave function for Tetraquark - wave and spin 1 Color Spin Color singlet Spin 1 quark antiquark

8 8 c c q q 12 34 Quark wave function for s-wave S=1 Tetraquark C=+ C=- Color Spin Quark model for tetraquark: Brink, Stancu 98, Hoggasen, Richard, Sorba 06, J. Vijande, E. Weissman, N. Barnea, and A. Valcarce 07..

9 9 Hamiltonian Using Brink, Stancu 98  Ground state of C=+ tetraquak Or it could be that (Hogaasen, Richard, Sorba 06) With small Isospin breaking W. Park, A Park, SHL 14

10 10 Slight detour (slide due to A. Park )

11 11 Slight detour (slide due to A. Park )

12 12  State with C=- (Woosung Park, SHL 14)  Or are molecular states or cusp? Ground state  Or Z(4430), X(3872) can be mixture of tetraquark and molecule Navara, Nielsen, Lee, Phys. Rept (11)  Or is 2s of in diquark picture (Maiani, Polosa, Riquer)

13 13 Tetraquarks: Plus Kinetic term vs additional attraction  Kinetic term c c q q  Additional attraction c c q q  Three body force ? Four body force ?

14 14 q q q q Why only heavy tetraquarks ?? (qq) vs (qq) attraction  Introducing c c q q c q c q

15 15 Tetra-quark – hadronic weak decay modes 1+1+ ud cc u d c c  0-0- 1-1- - Binding against decay = - 79.3 MeV Previous works on Tcc Z. Zouzou, B. Silverstre-Brac, C. Gilgnooux, J Richard (86), D. Janc, M. Rosina (04), Y. Cui, S. L. Zhu (07) QCD sum rules: F Navarra, M. Nielsen, SHLee, PLB 649, 166 (2007) simple diquark: SHL, S. Yasui, W.Liu, C Ko EPJ C54, 259 (2008), SHL, S. Yasui: EPJ C (09) SHL, S Yasui, W Liu, C Ko (08)

16 16 - WASA-at-COSY- d*(2380) ud  uu d d u u u d d d d*  ColorSpinFavor (QQ) 1 3bar0 -2 (QQ) 2 162/3 (QQ) 3 6061 (QQ) 4 13bar-1/3 

17 17 Question 1: Are X(3872), Z(3900),Z(4430),d* molecular states or multiquark states or cusp ?? Question 2: Where can we find flavor exotic multiquark states  Answer for both 1 and 2: From HIC

18 Normal meson TetraquarkMolecule Geometrical configuration 18 uu u d u d u u u d Normal meson, Tetraquark and Molecule Molecule  Ohkoda, Yasui … PRD86, 034019 (2012) Tetraquark  Woosung Par, SHL NPA 925, 16 (2014) Example Tcc  (1405)  K-N distance: around 1.7fm (Sekihara et al. 2011 )

19 19 Naïve Bag Model for Multiquark states uu u d u d

20 20 II: Statistical vs Coalescence model for Hadron production in Heavy Ion Collision -Production of hadrons -Production of light nuclei -Production of multiquark

21 21 u d c d u  c u p   C a c d  b G a/p G b/  dd D C/c X Hadron production in ( p+   C+X ) collision

22 22 T>Tc T=Tc  1 fm/c 5 fm/c 7 fm/c 17 fm/c QGP T H : Hadronization Hadron phase T F : Freezeout Hadronization and freezeout in Heavy Ion Collision Hadron Multiquark formation Light nuclei Molecular structure formation

23 23 Statistical Model for Hadron Yield in HIC (PB Munzinger, Stachel, Redlich) Freezeout points

24 24 Quark number scaling of v2 P T dependence of ratio v4 Greco, et al Greco et al d u d u u s d c d u u d s c c c d u M Coalescence model

25 25 Coalescence model for J/ 

26 26 Statistical Model for light Nuclei RHIC LHC T. Song: life time of hadronic phase RHIC/STAR antimatter S/N is conserved (Siemens, Kapusta 79)

27 27 Few findings about HIC

28 28 T>Tc T=Tc  1 fm/c 5 fm/c 7 fm/c 17 fm/c QGP T H : Hadronization Hadron phase T F : Freezeout V H : Hadronization Volume V F : Freezeout Volume Production of nucleon and light nuclei

29 29 V (fm 3 )V D (T) (fm 3 )Phase space/V N stat (T H ) 19085.10.0027 N coal (T F )11322290.0026 V parameterization:.Chen, Greco, Ko, SHL, Liu 04 Experimental fact (Statistical model) Theoretical expectation (Coalescence) V D (T)

30 30 Other light nuclei

31 31 T>Tc T=Tc  1 fm/c 5 fm/c 7 fm/c QGP T H : Hadronization Hadron phase T DF : Deuteron form T HeF : Helium form Different formation time for light nuclei

32 32 Bound states ?  (1405)  K-N  For molecular configuration will just fix V F (T F =125 MeV)

33 33 Coalescence model = Statistical model + overlap d u d u u s d c d u u d s c c c u d u d u Tetraquark configuration [overlap]<<1 Normal meson [overlap]=1 d u u d u u u d u Production of multiquark states at Tc

34 34 d u d u u s d s d d d u d u u s d s u u u d u s Tetraquark configuration [overlap]<<1 Molecular configuration: [overlap]=1 d Normal meson [overlap]=1 d d u Hadron production through coalescence u d uu u d u u u d u d d u d

35 35 III: Heavy Exotics from Heavy Ion Collision

36 36  large number of c, b quark production  Vertex detector: weakly decaying exotics : FAIR 10 4 D 0 /month, LHC 10 5 D 0 /month New perspective of Hadron Physics from Heavy Ion Collision T cc /D > 0.34 x 10 -4 RHIC > 0.8 x 10 -4 LHC  T cc production

37 37  Model central rapidity, central collision  Introduce charm fugacity LHC 10 5 D 0 /month Details of coalescence model calculation (ExHIC PRL, PRC 2011)  Coalescence model model and Wigner function  Parameters to fit normal hadron production including resonance feedown from statistical model

38 38  Hadron coalescence

39 39 Expectations [overlap] at LHC Fachini [STAR]

40 40 ExHIC (2011): multiquark/molecule candidates - yield

41 41 2.Measuring X(3872) or Z(3900)  J/  +  from heavy ion collision can discriminate between a molecular structure and multiquark configuration. 3. Heavy multiquark states + Exotics can be observed at LHC Summary 1. Compact multiquark configurations are harder to form from heavy ion collision.  f 0 measurement suggest that it can not be a pure multiquark structure. 4.Light resonances and/or multiquark states, or two states can be discriminated at HIC?


Download ppt "Su Houng Lee – (ExHIC coll.) 1. Recent findings of “Multiquark states” + several comments 2. Statistical vs Coalescence model for hadron production 3."

Similar presentations


Ads by Google