Presentation is loading. Please wait.

Presentation is loading. Please wait.

Relevant Mathematics Lecture 2 Classifying Functions The Time Complexity of an Algorithm Adding Made Easy Recurrence Relations.

Similar presentations


Presentation on theme: "Relevant Mathematics Lecture 2 Classifying Functions The Time Complexity of an Algorithm Adding Made Easy Recurrence Relations."— Presentation transcript:

1

2 Relevant Mathematics Lecture 2 Classifying Functions The Time Complexity of an Algorithm Adding Made Easy Recurrence Relations

3 Start With Some Math Input Size Time Classifying Functions f(i) = n  (n) Recurrence Relations T(n) = a T(n/b) + f(n) Adding Made Easy ∑ i=1 f(i). Time Complexity t(n) =  (n 2 )

4 Assumed Knowledge Read the section on Existential and Universal Quantifiers, Logarithms and Exponentials g  b Loves(b,g)  b g Loves(b,g)

5 Classifying Functions Giving an idea of how fast a function grows without going into too much detail.

6 Which are more alike?

7 Mammals

8 Which are more alike?

9 Dogs

10 Classifying Animals Vertebrates BirdsMammals Reptiles Fish Dogs Giraffe

11 Classifying Functions T(n)T(n) 101001,00010,000 log n 36913amoeba n 1/2 31031100bird 101001,00010,000human n log n 306009,000130,000my father n2n2 10010,00010 6 10 8 elephant n3n3 1,00010 6 10 9 10 12 dinosaur 2n2n 1,02410 30 10 300 10 3000 the universe Note: The universe contains approximately 10 50 particles. n

12 Which are more alike? n 1000 n2n2 2n2n

13 Which are more alike? Polynomials n 1000 n2n2 2n2n

14 Which are more alike? 1000n 2 3n 2 2n 3

15 Which are more alike? Quadratic 1000n 2 3n 2 2n 3

16 Classifying Functions? Functions

17 Classifying Functions Functions Constant Logarithmic Poly Logarithmic Polynomial Exponential ExpDouble Exp (log n) 5 n5n5 2 5n 5 log n5 2 n5n5 2 5n 2

18 Classifying Functions? Polynomial

19 Classifying Functions Polynomial LinearQuadratic Cubic ? 5n 2 5n 5n 3 5n 4

20 Logarithmic log 10 n = # digits to write n log 2 n = # bits to write n = 3.32 log 10 n log(n 1000 ) = 1000 log(n) Differ only by a multiplicative constant.

21 Poly Logarithmic (log n) 5 = log 5 n

22 Logarithmic << Polynomial For sufficiently large n log 1000 n << n 0.001

23 Linear << Quadratic For sufficiently large n 10000 n << 0.0001 n 2

24 Polynomial << Exponential For sufficiently large n n 1000 << 2 0.001 n

25 Ordering Functions Functions Constant Logarithmic Poly Logarithmic Polynomial Exponential ExpDouble Exp (log n) 5 n5n5 2 5n 5 log n5 2 n5n5 2 5n 2 <<

26 Which Functions are Constant? 5 1,000,000,000,000 0.0000000000001 -5 0 8 + sin(n) Yes No Yes

27 Which Functions are “Constant”? 5 1,000,000,000,000 0.0000000000001 -5 0 8 + sin(n) Yes No Yes Lie in between 7 9 The running time of the algorithm is a “Constant” It does not depend significantly on the size of the input.

28 Which Functions are Quadratic? n 2 … ?

29 Which Functions are Quadratic? n 2 0.001 n 2 1000 n 2 Some constant times n 2.

30 Which Functions are Quadratic? n 2 0.001 n 2 1000 n 2 5n 2 + 3n + 2log n

31 Which Functions are Quadratic? n 2 0.001 n 2 1000 n 2 5n 2 + 3n + 2log n Lie in between

32 Which Functions are Quadratic? n 2 0.001 n 2 1000 n 2 5n 2 + 3n + 2log n Ignore low-order terms Ignore multiplicative constants. Ignore "small" values of n. Write θ(n 2 ).

33 Which Functions are Polynomial? n 5 … ?

34 Which Functions are Polynomial? n c n 0.0001 n 10000 n to some constant power.

35 Which Functions are Polynomial? n c n 0.0001 n 10000 5n 2 + 8n + 2log n 5n 2 log n 5n 2.5

36 Which Functions are Polynomial? n c n 0.0001 n 10000 5n 2 + 8n + 2log n 5n 2 log n 5n 2.5 Lie in between

37 Which Functions are Polynomials? n c n 0.0001 n 10000 5n 2 + 8n + 2log n 5n 2 log n 5n 2.5 Ignore low-order terms Ignore power constant. Ignore "small" values of n. Write n θ(1)

38 Which Functions are Exponential? 2 n … ?

39 Which Functions are Exponential? 2 n 2 0.0001 n 2 10000 n n times some constant power raises to the power of 2.

40 Which Functions are Exponential? 2 n 2 0.0001 n 2 10000 n 8 n 2 n / n 100 2 n · n 100 too small? too big?

41 Which Functions are Exponential? 2 n 2 0.0001 n 2 10000 n 8 n 2 n / n 100 2 n · n 100 = 2 3n > 2 0.5n < 2 2n Lie in between

42 Which Functions are Exponential? 2 n 2 0.0001 n 2 10000 n 8 n 2 n / n 100 2 n · n 100 = 2 3n > 2 0.5n < 2 2n 2 0.5n > n 100 2 n = 2 0.5n · 2 0.5n > n 100 · 2 0.5n 2 n / n 100 > n 0.5n

43 Which Functions are Exponential? Ignore low-order terms Ignore base. Ignore "small" values of n. Ignore polynomial factors. Write 2 θ(n) 2 n 2 0.0001 n 2 10000 n 8 n 2 n / n 100 2 n · n 100

44 Classifying Functions Functions Constant Logarithmic Poly Logarithmic PolynomialExponential Exp Double Exp (log n) θ(1) n θ(1) 2 θ(n) θ(log n)θ(1) 2 n θ(1) 2 θ(n) 2

45 Notations Theta f(n) = θ(g(n))f(n) ≈ c g(n) BigOh f(n) = O(g(n))f(n) ≤ c g(n) Omega f(n) = Ω(g(n))f(n) ≥ c g(n) Little Oh f(n) = o(g(n))f(n) << c g(n) Little Omega f(n) = ω(g(n))f(n) >> c g(n)

46 Definition of Theta f(n) = θ(g(n))

47 Definition of Theta f(n) is sandwiched between c 1 g(n) and c 2 g(n) f(n) = θ(g(n))

48 Definition of Theta f(n) is sandwiched between c 1 g(n) and c 2 g(n) for some sufficiently small c 1 (= 0.0001) for some sufficiently large c 2 (= 1000) f(n) = θ(g(n))

49 Definition of Theta For all sufficiently large n f(n) = θ(g(n))

50 Definition of Theta For all sufficiently large n For some definition of “sufficiently large” f(n) = θ(g(n))

51 Definition of Theta 3n 2 + 7n + 8 = θ(n 2 )

52 Definition of Theta 3n 2 + 7n + 8 = θ(n 2 ) c 1 ·n 2  3n 2 + 7n + 8  c 2 ·n 2 ??

53 Definition of Theta 3n 2 + 7n + 8 = θ(n 2 ) 3·n 2  3n 2 + 7n + 8  4·n 2 34

54 Definition of Theta 3n 2 + 7n + 8 = θ(n 2 ) 3·1 2  3·1 2 + 7·1 + 8  4·1 2 1 False

55 Definition of Theta 3n 2 + 7n + 8 = θ(n 2 ) 3·7 2  3·7 2 + 7·7 + 8  4·7 2 7 False

56 Definition of Theta 3n 2 + 7n + 8 = θ(n 2 ) 3·8 2  3·8 2 + 7·8 + 8  4·8 2 8 True

57 Definition of Theta 3n 2 + 7n + 8 = θ(n 2 ) 3·9 2  3·9 2 + 7·9 + 8  4·9 2 9 True

58 Definition of Theta 3n 2 + 7n + 8 = θ(n 2 ) 3·10 2  3·10 2 + 7·10 + 8  4·10 2 10 True

59 Definition of Theta 3n 2 + 7n + 8 = θ(n 2 ) 3·n 2  3n 2 + 7n + 8  4·n 2 ?

60 Definition of Theta 3n 2 + 7n + 8 = θ(n 2 ) 3·n 2  3n 2 + 7n + 8  4·n 2 n  8 8

61 Definition of Theta 3n 2 + 7n + 8 = θ(n 2 ) 3·n 2  3n 2 + 7n + 8  4·n 2 True n  8

62 Definition of Theta 3n 2 + 7n + 8 = θ(n 2 ) 3·n 2  3n 2 + 7n + 8  4·n 2 7n + 8  1 · n 2 7 + 8 / n  1 · n n  8 True

63 Definition of Theta 3n 2 + 7n + 8 = θ(n 2 ) 3·n 2  3n 2 + 7n + 8  4·n 2 348 n  8 True

64 Definition of Theta n 2 = θ(n 3 )

65 Definition of Theta n 2 = θ(n 3 ) c 1 · n 3  n 2  c 2 · n 3 ??

66 Definition of Theta n 2 = θ(n 3 ) 0 · n 3  n 2  c 2 · n 3 0 True, but ?

67 Definition of Theta n 2 = θ(n 3 ) 0 Constants c1 and c2 must be positive! False

68 Definition of Theta 3n 2 + 7n + 8 = θ(n)

69 Definition of Theta 3n 2 + 7n + 8 = θ(n) c 1 ·n  3n 2 + 7n + 8  c 2 ·n ??

70 Definition of Theta 3n 2 + 7n + 8 = θ(n) 3·n  3n 2 + 7n + 8  100·n 3 100

71 Definition of Theta 3n 2 + 7n + 8 = θ(n) 3·n  3n 2 + 7n + 8  100·n ?

72 Definition of Theta 3n 2 + 7n + 8 = θ(n) 3·100  3·100 2 + 7·100 + 8  100·100 100 False

73 Definition of Theta 3n 2 + 7n + 8 = θ(n) 3·n  3n 2 + 7n + 8  10,000·n 3 10,000

74 Definition of Theta 3n 2 + 7n + 8 = θ(n) 3·10,000  3·10,000 2 + 7·10,000 + 8  100·10,000 10,000 False

75 Definition of Theta 3n 2 + 7n + 8 = θ(n) What is the reverse statement?

76 Understand Quantifiers!!! SamMary BobBeth John Marilin Monro FredAnn SamMary BobBeth John Marilin Monro FredAnn  b,  Loves(b, MM)  b, Loves(b, MM)  b,  Loves(b, MM)]  b, Loves(b, MM)]

77 Definition of Theta 3n 2 + 7n + 8 = θ(n) The reverse statement

78 Definition of Theta 3n 2 + 7n + 8 = θ(n) 3n 2 + 7n + 8 > 100·n 3 100 ?

79 Definition of Theta 3n 2 + 7n + 8 = θ(n) 3 · 100 2 + 7 · 100 + 8 > 100 · 100 3 100 True 100

80 Definition of Theta 3n 2 + 7n + 8 = θ(n) 3n 2 + 7n + 8 > 10,000·n 3 10,000 ?

81 Definition of Theta 3n 2 + 7n + 8 = θ(n) 3 · 10,000 2 + 7 · 10,000 + 8 > 10,000 · 10,000 3 10,000 True 10,000

82 Definition of Theta 3n 2 + 7n + 8 = θ(n) 3n 2 + 7n + 8 > c 2 ·n c1c1 c2c2 ?

83 Definition of Theta 3n 2 + 7n + 8 = θ(n) 3 · c 2 2 + 7 · c 2 + 8 > c 2 · c 2 c1c1 c2c2 True c2c2

84 Definition of Theta 3n 2 + 7n + 8 = θ(n) 3n 2 + 7n + 8 > c 2 ·n c1c1 c2c2 ? n0n0

85 Definition of Theta 3n 2 + 7n + 8 = θ(n) 3 · c 2 2 + 7 · c 2 + 8 > c 2 · c 2 c1c1 max(c 2,n 0 ) True c2c2 n0n0

86 Definition of Theta 3n 2 + 7n + 8 = g(n) θ(1)  c 1, c 2, n 0,  n  n 0 g(n) c1  f(n)  g(n) c2 3n 2 + 7n + 8 = n θ(1)

87 Definition of Theta 3n 2 + 7n + 8 = n θ(1) n c1  3n 2 + 7n + 8  n c2  c 1, c 2, n 0,  n  n 0 g(n) c1  f(n)  g(n) c2 ??

88 Definition of Theta 3n 2 + 7n + 8 = n θ(1) n 2  3n 2 + 7n + 8  n 3  c 1, c 2, n 0,  n  n 0 g(n) c1  f(n)  g(n) c2 23

89 Definition of Theta 3n 2 + 7n + 8 = n θ(1) n 2  3n 2 + 7n + 8  n 3  c 1, c 2, n 0,  n  n 0 g(n) c1  f(n)  g(n) c2 23? n  ?

90 Definition of Theta 3n 2 + 7n + 8 = n θ(1) n 2  3n 2 + 7n + 8  n 3  c 1, c 2, n 0,  n  n 0 g(n) c1  f(n)  g(n) c2 235 n  5

91 Definition of Theta 3n 2 + 7n + 8 = n θ(1) n 2  3n 2 + 7n + 8  n 3 True  c 1, c 2, n 0,  n  n 0 g(n) c1  f(n)  g(n) c2 235 n  5

92 Order of Quantifiers f(n) = θ(g(n)) ?

93 Understand Quantifiers!!! One girl Could be a separate girl for each boy. SamMary BobBeth John Marilin Monro FredAnn SamMary BobBeth John Marilin Monro FredAnn

94 Order of Quantifiers No! It cannot be a different c 1 and c 2 for each n. f(n) = θ(g(n))

95 Other Notations Theta f(n) = θ(g(n))f(n) ≈ c g(n) BigOh f(n) = O(g(n))f(n) ≤ c g(n) Omega f(n) = Ω(g(n))f(n) ≥ c g(n) Little Oh f(n) = o(g(n))f(n) << c g(n) Little Omega f(n) = ω(g(n))f(n) >> c g(n)

96 BigOh Notation n 2 = O(n 3 ) n 3 = O(n 2 )

97 BigOh Notation O(n 2 ) = O(n 3 ) O(n 3 ) = O(n 2 ) Odd Notation f(n) = O(g(n)) Standard f(n) ≤ O(g(n)) Stresses one function dominating another. f(n)  O(g(n)) Stress function is member of class.

98 The Time Complexity of an Algorithm Specifies how the running time depends on the size of the input.

99 Purpose?

100 Purpose To estimate how long a program will run. To estimate the largest input that can reasonably be given to the program. To compare the efficiency of different algorithms. To help focus on the parts of code that are executed the largest number of times. To choose an algorithm for an application.

101 Time Complexity Is a Function Specifies how the running time depends on the size of the input. A function mapping “size” of input “time” T(n) executed.

102 Definition of Time?

103 Definition of Time # of seconds (machine dependent). # lines of code executed. # of times a specific operation is performed (e.g., addition). Which?

104 Definition of Time # of seconds (machine dependent). # lines of code executed. # of times a specific operation is performed (e.g., addition). These are all reasonable definitions of time, because they are within a constant factor of each other.

105 Size of Input Instance? 83920

106 Size of Input Instance Size of paper # of bits # of digits Value - n = 2 in 2 - n = 17 bits - n = 5 digits - n = 83920 2’’ 83920 5 1’’ Which are reasonable?

107 Size of Input Instance Size of paper # of bits # of digits Value - n = 2 in 2 - n = 17 bits - n = 5 digits - n = 83920 Intuitive 2’’ 83920 5 1’’

108 Size of Input Instance Size of paper # of bits # of digits Value - n = 2 in 2 - n = 17 bits - n = 5 digits - n = 83920 Intuitive Formal 2’’ 83920 5 1’’

109 Size of Input Instance Size of paper # of bits # of digits Value - n = 2 in 2 - n = 17 bits - n = 5 digits - n = 83920 Intuitive Formal Reasonable # of bits = 3.32 * # of digits 2’’ 83920 5 1’’

110 Size of Input Instance Size of paper # of bits # of digits Value - n = 2 in 2 - n = 17 bits - n = 5 digits - n = 83920 Intuitive Formal Reasonable Unreasonable # of bits = log 2 (Value) Value = 2 # of bits 2’’ 83920 5 1’’

111 Two Example Algorithms Sum N array entries: A(1) + A(2) + A(3) + … Factor value N: Input N=5917 & Output N=97*61. Algorithm N/2, N/3, N/4, …. ? Time?

112 Two Example Algorithms Sum N array entries: A(1) + A(2) + A(3) + … Factor value N: Input N=5917 & Output N=97*61. Algorithm N/2, N/3, N/4, …. ? Time = N

113 Two Example Algorithms Sum N array entries: A(1) + A(2) + A(3) + … Factor value N: Input N=5917 & Output N=97*61. Algorithm N/2, N/3, N/4, …. ? Is this reasonable? Time = N

114 Two Example Algorithms Sum N array entries: A(1) + A(2) + A(3) + … Factor value N: Input N=5917 & Output N=97*61. Algorithm N/2, N/3, N/4, …. ? No! Time = N One is considered fast and the other slow!

115 Two Example Algorithms Sum N array entries: A(1) + A(2) + A(3) + … Factor value N: Input N=5917 & Output N=97*61. Algorithm N/2, N/3, N/4, …. ? Size of Input Instance?

116 Two Example Algorithms Sum N array entries: A(1) + A(2) + A(3) + … Factor value N: Input N=5917 & Output N=97*61. Algorithm N/2, N/3, N/4, …. ? size n = N size n = log N

117 Two Example Algorithms Sum N array entries: A(1) + A(2) + A(3) + … Factor value N: Input N=5917 & Output N=97*61. Algorithm N/2, N/3, N/4, …. ? Time as function of input size? size n = N size n = log N

118 Two Example Algorithms Sum N array entries: A(1) + A(2) + A(3) + … Factor value N: Input N=5917 & Output N=97*61. Algorithm N/2, N/3, N/4, …. ? Time = N = n Time = N = 2 n size n = N size n = log N

119 Two Example Algorithms Sum N array entries: A(1) + A(2) + A(3) + … Factor value N: Input N=5917 & Output N=97*61. Algorithm N/2, N/3, N/4, …. ? Linear vs Exponential Time! Time = N = n Time = N = 2 n size n = N size n = log N

120 Size of Input Instance? 14,23,25,30,31,52,62,79,88,98

121 Size of Input Instance # of elements - n = 10 elements 14,23,25,30,31,52,62,79,88,98 10

122 Size of Input Instance # of elements - n = 10 elements 14,23,25,30,31,52,62,79,88,98 10 Is this reasonable?

123 Size of Input Instance # of elements - n = 10 elements ~ Reasonable 14,23,25,30,31,52,62,79,88,98 10 If each element has size c # of bits = c * # of elements

124 Size of Input Instance # of elements - n = 10 elements Reasonable 14,23,25,30,31,52,62,79,88,98 10 If each element is in [1..n] each element has size log n # of bits = n log n ≈ n

125 Time Complexity Is a Function Specifies how the running time depends on the size of the input. A function mapping # of bits n needed to represent the input # of operations T(n) executed.

126 Which Input of size n? There are 2 n inputs of size n. Which do we consider for the time T(n)?

127 Which Input of size n? Typical Input Average Case Worst Case

128 Which Input of size n? Typical InputBut what is typical? Average CaseFor what distribution? Worst CaseTime for all inputs is bound. Easiest to compute

129 What is the height of tallest person in the class? Bigger than this? Need to look at only one person Need to look at every person Smaller than this?

130 Time Complexity of Algorithm O(n 2 ): Prove that for every input of size n, the algorithm takes no more than cn 2 time. Ω(n 2 ): Find one input of size n, for which the algorithm takes at least this much time. θ (n 2 ): Do both. The time complexity of an algorithm is the largest time required on any input of size n.

131 Time Complexity of Problem O(n 2 ): Provide an algorithm that solves the problem in no more than this time. Ω(n 2 ): Prove that no algorithm can solve it faster. θ (n 2 ): Do both. The time complexity of a problem is the time complexity of the fastest algorithm that solves the problem.

132 Adding The Classic Techniques Evaluating ∑ i=1 f(i). n

133 Gauss ∑ i=1..n i = 1 + 2 + 3 +... + n = ? Arithmetic Sum

134 1+2+3+...+ n-1+n=S n+n-1+n-2+... +2+1=S (n+1) + (n+1) + (n+1) +... + (n+1) + (n+1) = 2S n (n+1) = 2S

135 1+2+3+...+ n-1+n=S n+n-1+n-2+... +2+1=S (n+1) + (n+1) + (n+1) +... + (n+1) + (n+1) = 2S n (n+1) = 2S

136 1+2+3+...+ n-1+n=S n+n-1+n-2+... +2+1=S (n+1) + (n+1) + (n+1) +... + (n+1) + (n+1) = 2S n (n+1) = 2S

137 1+2+3+...+ n-1+n=S n+n-1+n-2+... +2+1=S (n+1) + (n+1) + (n+1) +... + (n+1) + (n+1) = 2S n (n+1) = 2S

138 Let’s restate this argument using a geometric representation Algebraic argument

139 1 2........ n = number of white dots.

140 1 2........ n = number of white dots = number of yellow dots n....... 2 1

141 n+1 n+1 n+1 n+1 n+1 = number of white dots = number of yellow dots n n n n n n There are n(n+1) dots in the grid

142 n+1 n+1 n+1 n+1 n+1 = number of white dots = number of yellow dots n n n n n n Note =  (# of terms · last term))

143 Gauss ∑ i=1..n i = 1 + 2 + 3 +... + n =  (# of terms · last term) Arithmetic Sum True when ever terms increase slowly

144 ∑ i=0..n 2 i = 1 + 2 + 4 + 8 +... + 2 n = ? Geometric Sum

145

146 ∑ i=0..n 2 i = 1 + 2 + 4 + 8 +... + 2 n = 2 · last term - 1 Geometric Sum

147 ∑ i=0..n r i = r 0 + r 1 + r 2 +... + r n = ? Geometric Sum

148 S Srrrr...rr S 1r S r1 r1 23nn1 n1 n1  1rrr... 23 r n          Geometric Sum

149 ∑ i=0..n r i r1 r1 n1     Geometric Sum When r>1?

150 ∑ i=0..n r i r1 r1 n1     Geometric Sum θ(rn)θ(rn) Biggest Term When r>1

151 ∑ i=0..n r i = r 0 + r 1 + r 2 +... + r n =  (biggest term) Geometric Increasing True when ever terms increase quickly

152 ∑ i=0..n r i  Geometric Sum When r<1? 1 r n1   

153 ∑ i=0..n r i  Geometric Sum 1 r n1     θ(1) When r<1 Biggest Term

154 ∑ i=0..n r i = r 0 + r 1 + r 2 +... + r n =  (1) Bounded Tail True when ever terms decrease quickly

155 ∑ i=1..n 1 / i = 1 / 1 + 1 / 2 + 1 / 3 + 1 / 4 + 1 / 5 + …+ 1 / n = ? Harmonic Sum

156 f(i) = 1 ∑ i=1..n f(i) = n n Sum of Shrinking Function

157 f(i) = ? ∑ i=1..n f(i) = n 1/2 n Sum of Shrinking Function

158 f(i) = 1/2 i ∑ i=1..n f(i) = 2  Sum of Shrinking Function

159 f(i) = 1/i ∑ i=1..n f(i) = ? n Sum of Shrinking Function

160 Harmonic Sum

161 ∑ i=1..n 1 / i = 1 / 1 + 1 / 2 + 1 / 3 + 1 / 4 + 1 / 5 + …+ 1 / n =  (log(n)) Harmonic Sum

162 Approximating Sum by Integrating The area under the curve approximates the sum ∑ i=1..n f(i) ≈ ∫ x=1..n f(x) dx

163 Approximating Sum by Integrating 1 / c+1 x c+1 d dx = x c ∫ x=1..n x c dx = 1 / c+1 n c+1 ∑ i=1..n i c ≈ Arithmetic Sums  θ(# of terms · last term) True when ever terms increase slowly = θ(n · n c+1 )

164 Approximating Sum by Integrating 1 / ln(b) e ln(b)x d dx = e ln(b)x = b x ∫ x=1..n b x dx = 1 / ln(b) b x ∑ i=1..n b i ≈ Geometric Sums  θ(last term) True when ever terms increase quickly = θ(b n )

165 Harmonic Sum Approximating Sum by Integrating

166 Problem: Integrating may be hard too.

167 Outline II) Math proofs of sums V) Ability to know the answer fast I) What is the sum Eg. ∑ i=1..n f(i) = ∑ i=1..n 1 / i 0.9999 =θ(n 0.0001 ) III) Pattern of sums ∑ i=1..n f(i) = θ(n · f(n)) IV) Intuition why this is the sum I flash it up If you follow great. If not don’t panic.

168 Adding Made Easy We will now classify (most) functions f(i) into four classes: –Geometric Like –Arithmetic Like –Harmonic –Bounded Tail

169 Adding Made Easy We will now classify (most) functions f(i) into four classes For each class, we will give an easy rule for approximating it’s sum θ( ∑ i=1..n f(i) )

170 Classifying Animals Vertebrates Birds Mammals Reptiles Fish Dogs Giraffe Mammal  Complex social networks Dog  Man’s best friend

171 Classifying Functions Functions Poly. Exp. 2 θ(n)  ∑ i=1..n f(i) = θ(f(n)) 8 · 2 n / n 100 + n 3 θ(2 n / n 100 ) 8 · 2 n + n 3 n θ(1) 2 θ(n) θ(2n)θ(2n) f(n) = 8 · 2 n / n 100 + n 3 θ(2 n / n 100 )  ∑ i=1..n f(i) = θ(2 n / n 100 ) 2 0.5n << 2 n 8 · 2 n / n 100 + n 3 Significant Less significant Irrelevant

172 Adding Made Easy 11 1 2 3 4 Four Classes of Functions

173 Adding Made Easy

174 If the terms f(i) grow sufficiently quickly, then the sum will be dominated by the largest term. Silly example: 1+2+3+4+5+ 1,000,000,000 ≈ 1,000,000,000 f(i)  2 Ω(n)  ∑ i=1..n f(i) = θ(f(n)) Geometric Like:

175 If the terms f(i) grow sufficiently quickly, then the sum will be dominated by the largest term. Classic example: ? f(i)  2 Ω(n)  ∑ i=1..n f(i) = θ(f(n)) Geometric Like:

176 If the terms f(i) grow sufficiently quickly, then the sum will be dominated by the largest term. Classic example: ∑ i=1..n 2 i = 2 n+1 -1 ≈ 2 f(n) f(i)  2 Ω(n)  ∑ i=1..n f(i) = θ(f(n)) Geometric Like:

177 If the terms f(i) grow sufficiently quickly, then the sum will be dominated by the largest term. For which functions f(i) is this true? How fast and how slow can it grow? f(i)  2 Ω(n)  ∑ i=1..n f(i) = θ(f(n)) Geometric Like:

178 r1 r1 n1      θ( ) r n Last Term when r>1. ∑ i=1..n r i 1rrr... 23 r n    θ(f(n)) ∑ i=1..n (1.0001) i ≈ 10,000 (1.0001) n = 10,000 f(n) Lower Extreme: Upper Extreme: ∑ i=1..n (1000) i ≈ 1.001(1000) n = 1.001 f(n) Recall, when f(n) = r i = 2 θ(n) f(i)  2 Ω(n)  ∑ i=1..n f(i) = θ(f(n)) Geometric Like:

179 Because the constant is sooo big, the statement is just barely true. ∑ i=1..n (1.0001) i ≈ 10,000 (1.0001) n = 10,000 f(n) Lower Extreme: Upper Extreme: ∑ i=1..n (1000) i ≈ 1.001(1000) n = 1.001 f(n) f(i)  2 Ω(n)  ∑ i=1..n f(i) = θ(f(n)) Geometric Like:

180 ∑ i=1..n (1.0001) i ≈ 10,000 (1.0001) n = 10,000 f(n) Lower Extreme: Upper Extreme: ∑ i=1..n (1000) i ≈ 1.001(1000) n = 1.001 f(n) Even bigger? f(i)  2 Ω(n)  ∑ i=1..n f(i) = θ(f(n)) Geometric Like:

181 2n2n 2i2i ∑ i=1..n 2 2 ≈ 2 2 = 1f(n) No Upper Extreme: Even bigger? ∑ i=1..n (1.0001) i ≈ 10,000 (1.0001) n = 10,000 f(n) Lower Extreme: f(i)  2 Ω(n)  ∑ i=1..n f(i) = θ(f(n)) Geometric Like:

182 2n2n 2i2i ∑ i=1..n 2 2 ≈ 2 2 = 1f(n) No Upper Extreme: Functions in between? ∑ i=1..n (1.0001) i ≈ 10,000 (1.0001) n = 10,000 f(n) Lower Extreme: f(i)  2 Ω(n)  ∑ i=1..n f(i) = θ(f(n)) Geometric Like:

183 ∑ i=1..n 2 i = 2 · 2 n –2 = 2 1 + 2 2 + 2 3 + 2 4 +…+ 2 n 8 · [ ] 8·8· 8·8· 8·8· 8·8· 8·8· 8·8· = θ( 2 n ) 1 100 2 100 3 100 4 100 n 100 i 100 n 100 + i 3 + 1 3 + 2 3 + 3 3 + 4 3 + n 3 Dominated by the largest term. = θ(f(n)) f(n) = 2 n 8·8· n 100 + n 3 = θ( 2 n ) n 100 f(i)  2 Ω(n)  ∑ i=1..n f(i) = θ(f(n)) Geometric Like: n 100 ≈

184 f(i)  2 Ω(n)  ∑ i=1..n f(i) = θ(f(n)) Geometric Like: f(n) = 2 n 8·8· n 100 ∑ i=1..n f(i) f(n)  c · f(n) f(i)  · f(n) f(i)  · f(i +1 ) EasyHard (i +1 ) 100 i 100 2 =  (1 + 1 / i ) 100 1 2 1.9 = 8 · 2 (i+1) (i +1 ) 100 f(i +1 ) f(i) 8·2i8·2i i 100 =  1/.51  · f(i +1 ) f(i)

185 f(i)  2 Ω(n)  ∑ i=1..n f(i) = θ(f(n)) Geometric Like: f(n) = 2 n 8·8· n 100 ∑ i=1..n f(i) f(n)  c · f(n) f(i)  · f(n)   · f(i +2 )  · f(i +1 ) f(i)  · f(i +1 ) f(i)   · f(i +3 ) .51 (n-i) ·f(i +(n-i) ) .51 (n-i) ·f( n ) f(i) .51 (n-i) ·f( n ) Eg. i = n, f(n) .51 (n-n) ·f( n )  1·f( n ) i = 0, f(0) .51 n ·f( n )

186 f(i)  2 Ω(n)  ∑ i=1..n f(i) = θ(f(n)) Geometric Like: f(n) = 2 n 8·8· n 100 ∑ i=1..n f(i) f(n)  c · f(n) ∑ i=1..n f(i)  ∑ i=1..n.51 (n-i) ·f( n ) = θ(1) · f(n) f(i)  · f(n)  · f(i +1 ) f(i) f(i) .51 (n-i) ·f( n ) = [∑ i=1..n.51 (n-i) ] · f( n )

187 Functions Poly. Exp. 2 θ(n)  ∑ i=1..n f(i) = θ(f(n)) 8 · 2 n / n 100 + n 3 θ(2 n / n 100 ) 8 · 2 n + n 3 n θ(1) 2 θ(n) θ(2n)θ(2n) f(n) = 8 · 2 n / n 100 + n 3 θ(2 n / n 100 )  ∑ i=1..n f(i) = θ(2 n / n 100 ) 2 0.5n << 2 n 8 · 2 n / n 100 + n 3 Significant Less significant Irrelevant f(i)  2 Ω(n)  ∑ i=1..n f(i) = θ(f(n)) Geometric Like:

188 If f(n) = c b an n d log e (n) c  ? a  ? b  ? d  ? e  ? f(n) = Ω, θ ? then ∑ i=1..n f(i) = θ(f(n)).  2 Ω(n) > 0  0  1 (- ,  ) f(i)  2 Ω(n)  ∑ i=1..n f(i) = θ(f(n)) Geometric Like:

189 f(i)  2 Ω(n)  ∑ i=1..n f(i) = θ(f(n)) Geometric Like:

190 All functions in 2 Ω(n) ? Maybe not. f(i)  2 Ω(n)  ∑ i=1..n f(i) = θ(f(n)) Geometric Like:

191 Functions that oscillate continually do not have the property. f(i)  2 Ω(n)  ∑ i=1..n f(i) = θ(f(n)) Geometric Like:

192 Functions expressed with +, -, , , exp, log do not oscillate continually. They are well behaved for sufficiently large n. These do have the property. f(i)  2 Ω(n)  ∑ i=1..n f(i) = θ(f(n)) Geometric Like:

193 Adding Made Easy Done

194 Adding Made Easy

195 If most of the terms f(i) have roughly the same value, then the sum is roughly the number of terms, n, times this value. Silly example: 1,001 + 1,002 + 1,003 + 1,004 + 1,005 ≈ 5 · 1,000 f(i) = n θ(1)-1  ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:

196 If most of the terms f(i) have roughly the same value, then the sum is roughly the number of terms, n, times this value. Another silly example: ∑ i=1..n 1 = n · 1 f(i) = n θ(1)-1  ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:

197 If most of the terms f(i) have roughly the same value, then the sum is roughly the number of terms, n, times this value. Is the statement true for this function? ∑ i=1..n i = 1 + 2 + 3 +... + n f(i) = n θ(1)-1  ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:

198 If most of the terms f(i) have roughly the same value, then the sum is roughly the number of terms, n, times this value. Is the statement true for this function? ∑ i=1..n i = 1 + 2 + 3 +... + n The terms are not roughly the same. f(i) = n θ(1)-1  ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:

199 But half the terms are roughly the same. ∑ i=1..n i = 1 +... + n/2 +... + n f(i) = n θ(1)-1  ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:

200 But half the terms are roughly the same and the sum is roughly the number terms, n, times this value ∑ i=1..n i = 1 +... + n/2 +... + n ∑ i=1..n i = θ(n · n) f(i) = n θ(1)-1  ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:

201 Is the statement true for this function? ∑ i=1..n i 2 = 1 2 + 2 2 + 3 2 +... + n 2 Even though, the terms are not roughly the same. f(i) = n θ(1)-1  ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:

202 Again half the terms are roughly the same. ∑ i=1..n i = 1 2 +... + (n/2) 2 +... + n 2 1 / 4 n 2 f(i) = n θ(1)-1  ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:

203 Again half the terms are roughly the same. ∑ i=1..n i = 1 2 +... + (n/2) 2 +... + n 2 1 / 4 n 2 ∑ i=1..n i 2 = θ(n · n 2 ) f(i) = n θ(1)-1  ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:

204 ∑ i=1..n f(i) ≈ area under curve f(i) = n θ(1)-1  ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:

205 area of small square  ∑ i=1..n f(i) ≈ area under curve  area of big square f(i) = n θ(1)-1  ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:

206 n / 2 · f( n / 2 ) = area of small square  ∑ i=1..n f(i) ≈ area under curve  area of big square = n · f(n) f(i) = n θ(1)-1  ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:

207 θ(n · f(n)) = n / 2 · f( n / 2 ) = area of small square  ∑ i=1..n f(i) ≈ area under curve  area of big square = n · f(n) f(i) = n θ(1)-1  ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:

208 θ(n · f(n)) = n / 2 · f( n / 2 ) = area of small square  ∑ i=1..n f(i) ≈ area under curve  area of big square = n · f(n) ? f(i) = n θ(1)-1  ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:

209 ∑ i=1..n i 2 = 1 2 + 2 2 + 3 2 +... + n 2 f(i) = n θ(1)-1  ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like: f(i) = n 2 f( n / 2 ) = θ(f(n)) The key property is = ?

210 The key property is f( n / 2 ) = (n/2) 2 = 1 / 4 n 2 = θ( n 2 ) = θ(f(n)) ∑ i=1..n i 2 = 1 2 + 2 2 + 3 2 +... + n 2 f(i) = n θ(1)-1  ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like: f(i) = n 2  = θ(n·f(n)) = θ(n · n 2 )

211 ∑ i=1..n f(i) = ? f(i) = n θ(1)-1  ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like: f(i) = n θ(1)

212 ∑ i=1..n i r = 1 r + 2 r + 3 r +... + n r f(i) = n θ(1)-1  ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like: f(i) = n θ(1) f( n / 2 ) = θ(f(n)) The key property is

213 f( n / 2 ) = (n/2) r = 1 / 2 r n r = θ( n r ) = θ(f(n)) ∑ i=1..n i r = 1 r + 2 r + 3 r +... + n r f(i) = n θ(1)-1  ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:  = θ(n·f(n)) = θ(n · n r ) f(i) = n θ(1)

214 ∑ i=1..n 2 i = 2 1 + 2 2 + 2 3 +... + 2 n f(i) = n θ(1)-1  ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like: f(i) = n θ(1) f( n / 2 ) = θ(f(n)) The key property is

215 ∑ i=1..n 2 i = 2 1 + 2 2 + 2 3 +... + 2 n f( n / 2 ) = 2 (n/2) = θ( 2 n ) = θ(f(n)) f(i) = n θ(1)-1  ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like: f(i) = n θ(1)  = θ(n·f(n)) = θ(n · 2 n )

216 ∑ i=1..n 1 = n · 1 = n · f(n) Middle Extreme: Upper Extreme: ∑ i=1..n i 1000 = 1 / 1001 n 1001 = 1 / 1001 n · f(n) All functions in between. f(i) = n θ(1)-1  ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:

217 Adding Made Easy Half done

218 f(i) = 1 ∑ i=1..n f(i) = n n Sum of Shrinking Function

219 f(i) = ? ∑ i=1..n f(i) = n 1/2 n Sum of Shrinking Function 1/i 1/2

220 f(i) = 1/i ∑ i=1..n f(i) = log n n Sum of Shrinking Function

221 f(i) = 1/2 i ∑ i=1..n f(i) = 2 Sum of Shrinking Function 

222 If most of the terms f(i) have roughly the same value, then the sum is roughly the number of terms, n, times this value. Does the statement hold for functions f(i) that shrink? f(i) = n θ(1)-1  ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:

223 If most of the terms f(i) have roughly the same value, then the sum is roughly the number of terms, n, times this value. ∑ i=1..n 1 / i = 1 / 1 + 1 / 2 + 1 / 3 + 1 / 4 + 1 / 5 + … + 1 / n Does the statement hold for the Harmonic Sum? f(i) = n θ(1)-1  ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:

224 Does the statement hold for the Harmonic Sum? ∑ i=1..n 1 / i = 1 / 1 + 1 / 2 + 1 / 3 + 1 / 4 + 1 / 5 + … + 1 / n ∑ i=1..n f(i) = ? θ(n · f(n)) f(i) = n θ(1)-1  ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:

225 Does the statement hold for the Harmonic Sum? ∑ i=1..n 1 / i = 1 / 1 + 1 / 2 + 1 / 3 + 1 / 4 + 1 / 5 + … + 1 / n ∑ i=1..n f(i) θ(n · f(n)) = ∑ i=1..n 1 / i = ? f(i) = n θ(1)-1  ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:

226 Does the statement hold for the Harmonic Sum? ∑ i=1..n 1 / i = 1 / 1 + 1 / 2 + 1 / 3 + 1 / 4 + 1 / 5 + … + 1 / n ∑ i=1..n f(i) θ(n · f(n)) = ∑ i=1..n 1 / i =θ(log n) f(i) = n θ(1)-1  ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:

227 Does the statement hold for the Harmonic Sum? ∑ i=1..n 1 / i = 1 / 1 + 1 / 2 + 1 / 3 + 1 / 4 + 1 / 5 + … + 1 / n ∑ i=1..n f(i) = θ(n · f(n)) = ∑ i=1..n 1 / i =θ(log n) ? f(i) = n θ(1)-1  ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:

228 Does the statement hold for the Harmonic Sum? ∑ i=1..n 1 / i = 1 / 1 + 1 / 2 + 1 / 3 + 1 / 4 + 1 / 5 + … + 1 / n ∑ i=1..n f(i) = θ(n · f(n)) = ∑ i=1..n 1 / i =θ(log n) θ(1) = θ(n · 1 / n ) f(i) = n θ(1)-1  ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:

229 Does the statement hold for the Harmonic Sum? ∑ i=1..n 1 / i = 1 / 1 + 1 / 2 + 1 / 3 + 1 / 4 + 1 / 5 + … + 1 / n ∑ i=1..n f(i) = θ(n · f(n)) = ∑ i=1..n 1 / i =θ(log n) θ(1) = θ(n · 1 / n ) ≠ No the statement does not hold! f(i) = n θ(1)-1  ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:

230 Adding Made Easy not included

231 Does the statement hold for the almost Harmonic Sum? ∑ i=1..n 1 / i 0.9999 Shrinks slightly slower than harmonic. f(i) = n θ(1)-1  ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:

232 Does the statement hold for the almost Harmonic Sum? ∑ i=1..n 1 / i 0.9999 ∑ i=1..n f(i) = θ(n · f(n)) = ∑ i=1..n 1 / i 0.9999 = ? f(i) = n θ(1)-1  ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:

233 Does the statement hold for the almost Harmonic Sum? ∑ i=1..n 1 / i 0.9999 ∑ i=1..n f(i) = θ(n · f(n)) = ∑ i=1..n 1 / i 0.9999 =θ(n 0.0001 ) f(i) = n θ(1)-1  ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:

234 Does the statement hold for the almost Harmonic Sum? ∑ i=1..n 1 / i 0.9999 ∑ i=1..n f(i) = θ(n · f(n)) = ∑ i=1..n 1 / i 0.9999 =θ(n 0.0001 ) ? f(i) = n θ(1)-1  ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:

235 Does the statement hold for the almost Harmonic Sum? ∑ i=1..n 1 / i 0.9999 ∑ i=1..n f(i) = θ(n · f(n)) = ∑ i=1..n 1 / i 0.9999 =θ(n 0.0001 ) θ(n 0.0001 ) = θ(n · 1 / n 0.9999 ) f(i) = n θ(1)-1  ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:

236 Does the statement hold for the almost Harmonic Sum? ∑ i=1..n 1 / i 0.9999 ∑ i=1..n f(i) = θ(n · f(n)) = ∑ i=1..n 1 / i 0.9999 =θ(n 0.0001 ) θ(n 0.0001 ) = θ(n · 1 / n 0.9999 ) = The statement does hold! f(i) = n θ(1)-1  ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:

237 ∑ i=1..n 1 = n · 1 = n · f(n) Middle Extreme: Lower Extreme: ∑ i=1..n 1 / i 0.9999 = θ(n 0.0001 ) = θ(n · f(n)) All functions in between. f(i) = n θ(1)-1  ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:

238 ∑ i=1..n 1 = n · 1 = n · f(n) Middle Extreme: Lower Extreme: ∑ i=1..n 1 / i 0.9999 = θ(n 0.0001 ) = θ(n · f(n)) Upper Extreme: ∑ i=1..n i 1000 = 1 / 1001 n 1001 = 1 / 1001 n · f(n) f(i) = n θ(1)-1  ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:

239 Arithmetic Like If f(n) = c b an n d log e (n) c  ? a  ? b  ? d  ? e  ? f(n) = Ω, θ ? then ∑ i=1..n f(i) = θ(n · f(n)). n -1+θ(1) > 0  0 or b  1 > -1 (- ,  ) (For +, -, , , exp, log functions f(n)) Conclusion

240 Adding Made Easy Done

241 Adding Made Easy Harmonic

242 Harmonic Sum ∑ i=1..n 1 / i = 1 / 1 + 1 / 2 + 1 / 3 + 1 / 4 + 1 / 5 + …+ 1 / n =  (log(n))

243 Adding Made Easy

244 If the terms f(i) decrease towards zero sufficiently quickly, then the sum will be a constant. The classic example ∑ i=0..n 1 / 2 i = 1 + 1 / 2 + 1 / 4 + 1 / 8 + … = 2. f(n)  n -1-Ω(1)  ∑ i=1..n f(i) = θ(1) Bounded Tail:

245 If f(i) decays even faster, then the tail of the sum is more bounded. 2i2i ∑ i=1..n 2 2 = θ(1). 1 f(n)  n -1-Ω(1)  ∑ i=1..n f(i) = θ(1) Bounded Tail:

246 Upper Extreme: ∑ i=1..n 1 / i 1.0001 = θ(1) f(n)  n -1-Ω(1)  ∑ i=1..n f(i) = θ(1) Bounded Tail:

247 Upper Extreme: ∑ i=1..n 1 / i 1.0001 = θ(1) No Lower Extreme: 2i2i ∑ i=1..n 2 2 = θ(1). 1 All functions in between. f(n)  n -1-Ω(1)  ∑ i=1..n f(i) = θ(1) Bounded Tail:

248 Bounded Tail If f(n) = c b an n d log e (n) c  ? a  ? b  ? d  ? e  ? f(n) = Ω, θ ? then ∑ i=1..n f(i) = θ(1). > 0  (- ,  ) Conclusion or b  1 c n d log e (n) c  a  b  b an

249 Bounded Tail If f(n) = c n d log e (n) c  ? a  b = 1 d  ? e  ? f(n) = Ω, θ ? then ∑ i=1..n f(i) = θ(1).  n θ(1)-1 > 0 < -1 (- ,  ) Conclusion

250 Adding Made Easy Done

251 Adding Made Easy Missing Functions 1 / nlogn logn / n

252 Adding Made Easy Geometric Like: If f(n)  2 Ω(n), then ∑ i=1..n f(i) = θ(f(n)). Arithmetic Like: If f(n) = n θ(1)-1, then ∑ i=1..n f(i) = θ(n · f(n)). Harmonic: If f(n) = 1 / n, then ∑ i=1..n f(i) = log e n + θ(1). Bounded Tail: If f(n)  n -1-Ω(1), then ∑ i=1..n f(i) = θ(1). ( For +, -, , , exp, log functions f(n) ) This may seem confusing, but it is really not. It should help you compute most sums easily.

253 Recurrence Relations T(1) = 1 T(n) = a T(n/b) + f(n)

254 Recurrence Relations  Time of Recursive Program procedure Eg(int n) if(n  1) then put “Hi” else loop i=1..f(n) put “Hi” loop i=1..a Eg(n/b) Recurrence relations arise from the timing of recursive programs. Let T(n) be the # of “Hi”s on an input of “size” n.

255 procedure Eg(int n) if(n  1) then put “Hi” else loop i=1..f(n) put “Hi” loop i=1..a Eg(n/b) Given size 1, the program outputs T(1)=1 Hi’s. Recurrence Relations  Time of Recursive Program

256 procedure Eg(int n) if(n  1) then put “Hi” else loop i=1..f(n) put “Hi” loop i=1..a Eg(n/b) Given size n, the stackframe outputs f(n) Hi’s. Recurrence Relations  Time of Recursive Program

257 procedure Eg(int n) if(n  1) then put “Hi” else loop i=1..f(n) put “Hi” loop i=1..a Eg(n/b) Recursing on a instances of size n/b generates T(n/b) “Hi”s. Recurrence Relations  Time of Recursive Program

258 procedure Eg(int n) if(n  1) then put “Hi” else loop i=1..f(n) put “Hi” loop i=1..a Eg(n/b) Recursing a times generates a·T(n/b) “Hi”s. Recurrence Relations  Time of Recursive Program

259 procedure Eg(int n) if(n  1) then put “Hi” else loop i=1..f(n) put “Hi” loop i=1..a Eg(n/b) For a total of T(1) = 1 T(n) = a·T(n/b) + f(n) “Hi”s. Recurrence Relations  Time of Recursive Program

260 Solving Technique 1 Guess and Verify Recurrence Relation: T(1) = 1 & T(n) = 4T(n/2) + n Guess: G(n) = 2n 2 – n Verify: Left Hand SideRight Hand Side T(1) = 2(1) 2 – 1 T(n) = 2n 2 – n 1 4T(n/2) + n = 4 [2( n / 2 ) 2 – ( n / 2 )] + n = 2n 2 – n

261 Recurrence Relation: T(1) = 1 & T(n) = 4T(n/2) + n Guess: G(n) = an 2 + bn + c Verify: Left Hand SideRight Hand Side T(1) = a+b+c T(n) = an 2 +bn+c 1 4T(n/2) + n = 4 [a ( n / 2 ) 2 + b ( n / 2 ) +c] + n = an 2 +(2b+1)n + 4c Solving Technique 2 Guess Form and Calculate Coefficients

262 Recurrence Relation: T(1) = 1 & T(n) = 4T(n/2) + n Guess: G(n) = an 2 + bn + 0 Verify: Left Hand SideRight Hand Side T(1) = a+b+c T(n) = an 2 +bn+c 1 4T(n/2) + n = 4 [a ( n / 2 ) 2 + b ( n / 2 ) +c] + n = an 2 +(2b+1)n + 4c Solving Technique 2 Guess Form and Calculate Coefficients c=4c c=0

263 Recurrence Relation: T(1) = 1 & T(n) = 4T(n/2) + n Guess: G(n) = an 2 - 1n + 0 Verify: Left Hand SideRight Hand Side T(1) = a+b+c T(n) = an 2 +bn+c 1 4T(n/2) + n = 4 [a ( n / 2 ) 2 + b ( n / 2 ) +c] + n = an 2 +(2b+1)n + 4c Solving Technique 2 Guess Form and Calculate Coefficients b=2b+1 b=-1

264 Recurrence Relation: T(1) = 1 & T(n) = 4T(n/2) + n Guess: G(n) = an 2 - 1n + 0 Verify: Left Hand SideRight Hand Side T(1) = a+b+c T(n) = an 2 +bn+c 1 4T(n/2) + n = 4 [a ( n / 2 ) 2 + b ( n / 2 ) +c] + n = an 2 +(2b+1)n + 4c Solving Technique 2 Guess Form and Calculate Coefficients a=a

265 Recurrence Relation: T(1) = 1 & T(n) = 4T(n/2) + n Guess: G(n) = 2n 2 - 1n + 0 Verify: Left Hand SideRight Hand Side T(1) = a+b+c T(n) = an 2 +bn+c 1 4T(n/2) + n = 4 [a ( n / 2 ) 2 + b ( n / 2 ) +c] + n = an 2 +(2b+1)n + 4c Solving Technique 2 Guess Form and Calculate Coefficients a+b+c=1 a-1+0=1 a=2

266 Recurrence Relation: T(1) = 1 & T(n) = aT(n/b) + f(n) Solving Technique 3 Approximate Form and Calculate Exponent which is bigger? Guess

267 Recurrence Relation: T(1) = 1 & T(n) = aT(n/b) + f(n) Guess: aT(n/b) << f(n) Simplify: T(n)  f(n) Solving Technique 3 Calculate Exponent In this case, the answer is easy. T(n) =  (f(n))

268 Recurrence Relation: T(1) = 1 & T(n) = aT(n/b) + f(n) Guess: aT(n/b) >> f(n) Simplify: T(n)  aT(n/b) Solving Technique 3 Calculate Exponent In this case, the answer is harder.

269 Recurrence Relation: T(1) = 1 & T(n) = aT(n/b) Guess: G(n) = cn  Verify: Left Hand SideRight Hand Side T(n) = cn  aT(n/b) = a [c ( n / b )  ] = c a b  n  Solving Technique 3 Calculate Exponent ( log a / log b ) = cn 1 = a b -  b  = a  log b = log a  = log a / log b

270 Recurrence Relation: T(1) = 1 & T(n) = 4T(n/2) Guess: G(n) = cn  Verify: Left Hand SideRight Hand Side T(n) = cn  aT(n/b) + f(n) = c [a ( n / b )  ] = c a b  n  Solving Technique 3 Calculate Exponent 1 = a b -  b  = a  log b = log a  = log a / log b ( log a / log b ) = cn ( log 4 / log 2 ) = cn 2

271 Recurrence Relation: T(1) = 1 & T(n) = aT(n/b) + f(n) Solving Technique 3 Calculate Exponent If bigger then T(n) =  (f(n)) If bigger then ( log a / log b ) T(n) =  (n ) And if aT(n/b)  f(n) what is T(n) then?

272 Technique 4: Decorate The Tree T(n) = a T(n/b) + f(n) f(n) T(n/b) T(n) = T(1) T(1) = 1 1 = a

273 f(n) T(n/b) T(n) = a

274 f(n) T(n/b) T(n) = a f(n/b) T(n/b 2 ) a

275 f(n) T(n) = a f(n/b) T(n/b 2 ) a f(n/b) T(n/b 2 ) a f(n/b) T(n/b 2 ) a f(n/b) T(n/b 2 ) a

276 11111111111111111111111111111111...... 111111111111111111111111111111111 f(n) T(n) = a f(n/b) T(n/b 2 ) a f(n/b) T(n/b 2 ) a f(n/b) T(n/b 2 ) a f(n/b) T(n/b 2 ) a

277 Evaluating: T(n) = aT(n/b)+f(n) Level 0 1 2 i h

278 Evaluating: T(n) = aT(n/b)+f(n) Level Instance size 0 1 2 i h

279 Evaluating: T(n) = aT(n/b)+f(n) Level Instance size 0n 1 2 i h

280 Evaluating: T(n) = aT(n/b)+f(n) Level Instance size 0n 1 n/b 2 i h

281 Evaluating: T(n) = aT(n/b)+f(n) Level Instance size 0n 1 n/b 2 n/b 2 i h

282 Evaluating: T(n) = aT(n/b)+f(n) Level Instance size 0n 1 n/b 2 n/b 2 i n/b i h n/b h

283 Evaluating: T(n) = aT(n/b)+f(n) Level Instance size 0n 1 n/b 2 n/b 2 i n/b i h n/b h

284 Evaluating: T(n) = aT(n/b)+f(n) Level Instance size 0n 1 n/b 2 n/b 2 i n/b i h n/b h = 1 base case

285 Evaluating: T(n) = aT(n/b)+f(n) Level Instance size 0n 1 n/b 2 n/b 2 i n/b i h n/b h = 1

286 Evaluating: T(n) = aT(n/b)+f(n) Level Instance size 0n 1 n/b 2 n/b 2 i n/b i h = log n / log b n/b h = 1 b h = n h log b = log n h = log n / log b

287 Evaluating: T(n) = aT(n/b)+f(n) Level Instance size Work in stack frame 0n 1 n/b 2 n/b 2 i n/b i h = log n / log b 1

288 Evaluating: T(n) = aT(n/b)+f(n) Level Instance size Work in stack frame 0n f(n) 1 n/bf(n/b) 2 n/b 2 f(n/b 2 ) i n/b i f(n/b i ) h = log n / log b 1T(1)

289 Evaluating: T(n) = aT(n/b)+f(n) Level Instance size Work in stack frame # stack frames 0n f(n) 1 n/bf(n/b) 2 n/b 2 f(n/b 2 ) i n/b i f(n/b i ) h = log n / log b n/b h T(1)

290 Evaluating: T(n) = aT(n/b)+f(n) Level Instance size Work in stack frame # stack frames 0n f(n) 1 1 n/bf(n/b) a 2 n/b 2 f(n/b 2 ) a2a2 i n/b i f(n/b i ) aiai h = log n / log b n/b h T(1) ahah

291 Evaluating: T(n) = aT(n/b)+f(n) Level Instance size Work in stack frame # stack frames 0n f(n) 1 1 n/bf(n/b) a 2 n/b 2 f(n/b 2 ) a2a2 i n/b i f(n/b i ) aiai h = log n / log b n/b h T(1) ahah

292 Evaluating: T(n) = aT(n/b)+f(n) Level Instance size Work in stack frame # stack frames 0n f(n) 1 1 n/bf(n/b) a 2 n/b 2 f(n/b 2 ) a2a2 i n/b i f(n/b i ) aiai h = log n / log b n/b h T(1) ahah a h = a = n log n / log b log a / log b

293 Evaluating: T(n) = aT(n/b)+f(n) Level Instance size Work in stack frame # stack frames Work in Level 0n f(n) 1 1 n/bf(n/b) a 2 n/b 2 f(n/b 2 ) a2a2 i n/b i f(n/b i ) aiai h = log n / log b n/b h T(1) n log a / log b

294 Evaluating: T(n) = aT(n/b)+f(n) Level Instance size Work in stack frame # stack frames Work in Level 0n f(n) 1 1 · f(n) 1 n/bf(n/b) a a · f(n/b) 2 n/b 2 f(n/b 2 ) a2a2 a 2 · f(n/b 2 ) i n/b i f(n/b i ) aiai a i · f(n/b i ) h = log n / log b n/b h T(1) n log a / log b n · T(1) log a / log b Total Work T(n) = ∑ i=0..h a i  f(n/b i )

295 Evaluating: T(n) = aT(n/b)+f(n) = ∑ i=0..h a i  f(n/b i ) If a Geometric Sum ∑ i=0..n x i  θ(max(first term, last term))

296 Evaluating: T(n) = aT(n/b)+f(n) Level Instance size Work in stack frame # stack frames Work in Level 0n f(n) 1 1 · f(n) 1 n/bf(n/b) a a · f(n/b) 2 n/b 2 f(n/b 2 ) a2a2 a 2 · f(n/b 2 ) i n/b i f(n/b i ) aiai a i · f(n/b i ) h = log n / log b n/b h T(1) n log a / log b n · T(1) log a / log b Dominated by Top Level or Base Cases

297 Evaluating: T(n) = aT(n/b)+f(n) Is the sum Geometric? Simplify by letting f(n) = n c log k n T(n) = ∑ i=0..h a i  f(n/b i ) = ∑ i=0..h a i  (n/b i ) c  log k (n/b i ) = n c ∑ i=0..h 2 [log a - c log b] · i  log k (n/b i ) Geometrically IncreasingArithmetic SumGeometrically Decreasing Sum = θ(last term) = θ( ) Sum = θ(any term  # terms) = θ(f(n)  log n) Sum = θ(first term) = θ(f(n)). log a - c log b < 0log a - c log b = 0log a - c log b < 0 c < log a / log b c = log a / log b & k<-1 c = log a / log b & k>-1 c > log a / log b n log a / log b (n/..) c = n c a i = 2 [log a]·i (.. /b i ) c = 2 [-c log b]·i = n c ∑ i=0..h 2 -d i  log k (n/b i )

298 Evaluating: T(n) = aT(n/b)+f(n) Is the sum Geometric? Simplify by letting f(n) = n c log k n T(n) = ∑ i=0..h a i  f(n/b i ) = ∑ i=0..h a i  (n/b i ) c  log k (n/b i ) = n c ∑ i=0..h 2 [log a - c log b] · i  log k (n/b i ) Geometrically IncreasingArithmetic SumGeometrically Decreasing Sum = θ(last term) = θ( ) Sum = θ(any term  # terms) = θ(f(n)  log n) Sum = θ(first term) = θ(f(n)). log a - c log b < 0log a - c log b = 0log a - c log b < 0 c < log a / log b c = log a / log b & k<-1 c = log a / log b & k>-1 c > log a / log b n log a / log b k =-1  log k ( n /b i ) = 1 / (logn - i  logb)  1 / i (backwards) = n c ∑ i=0..h 2 0 i  log k (n/b i ) (back wards) de

299 Evaluating: T(n) = aT(n/b)+f(n) Is the sum Geometric? Simplify by letting f(n) = n c log k n T(n) = ∑ i=0..h a i  f(n/b i ) = ∑ i=0..h a i  (n/b i ) c  log k (n/b i ) = n c ∑ i=0..h 2 [log a - c log b] · i  log k (n/b i ) Geometrically IncreasingArithmetic SumGeometrically Decreasing Sum = θ(last term) = θ( ) Sum = θ(any term  # terms) = θ(f(n)  log n) Sum = θ(first term) = θ(f(n)). log a - c log b < 0log a - c log b = 0log a - c log b < 0 c < log a / log b c = log a / log b & k<-1 c = log a / log b & k>-1 c > log a / log b n log a / log b = n c ∑ i=0..h 2 +d i  log k (n/b i )

300 Evaluating: T(n) = 4T(n/2)+ n 3 / log 5 n

301 Time for top level?: Evaluating: T(n) = 4T(n/2)+ n 3 / log 5 n

302 Time for top level: f(n) = n 3 / log 5 n Time for base cases?: Evaluating: T(n) = 4T(n/2)+ n 3 / log 5 n

303 Time for top level: f(n) = n 3 / log 5 n Time for base cases: Evaluating: T(n) = 4T(n/2)+ n 3 / log 5 n θ(n ) = log a / log b θ(n ) log ? / log ?

304 Time for top level: f(n) = n 3 / log 5 n Time for base cases: Evaluating: T(n) = 4T(n/2)+ n 3 / log 5 n θ(n ) = log a / log b θ(n ) = ? log 4 / log 2

305 Time for top level: f(n) = n 3 / log 5 n Time for base cases: Dominated?: c = ? Evaluating: T(n) = 4T(n/2)+ n 3 / log 5 n θ(n ) = log a / log b θ(n ) = θ(n 2 ) log 4 / log 2 log a / log b = ?

306 Time for top level: f(n) = n 3 / log 5 n Time for base cases: Dominated?: c = 3 > 2 = log a / log b Evaluating: T(n) = 4T(n/2)+ n 3 / log 5 n θ(n ) = log a / log b θ(n ) = θ(n 2 ) log 4 / log 2 Hence, T(n) = ?

307 Time for top level: f(n) = n 3 / log 5 n Time for base cases: Dominated?: c = 3 > 2 = log a / log b Evaluating: T(n) = 4T(n/2)+ n 3 / log 5 n θ(n ) = log a / log b θ(n ) = θ(n 2 ) log 4 / log 2 Hence, T(n) = θ(top) = θ(f(n)) = θ(n 3 / log 5 n ).

308 Time for top level: f(n) = 2 n Time for base cases: Dominated?: c = ? > 2 = log a / log b Evaluating: T(n) = 4T(n/2)+ 2 n θ(n ) = log a / log b θ(n ) = θ(n 2 ) log 4 / log 2 Hence, T(n) = θ(top) = θ(f(n)) = θ(2 n ). bigger >big The time is even more dominated by the top level of recursion

309 Time for top level: f(n) = n log 5 n Time for base cases: Dominated?: c = ? 2 = log a / log b Evaluating: T(n) = 4T(n/2)+ n log 5 n θ(n ) = log a / log b θ(n ) = θ(n 2 ) log 4 / log 2 Hence, T(n) = ? 1< = θ(base cases) = θ(n ) = θ(n 2 ). log a / log b

310 Time for top level: f(n) = log 5 n Time for base cases: Dominated?: c = ? 2 = log a / log b Evaluating: T(n) = 4T(n/2)+ log 5 n θ(n ) = log a / log b θ(n ) = θ(n 2 ) log 4 / log 2 Hence, T(n) = ? 0< = θ(base cases) = θ(n ) = θ(n 2 ). log a / log b

311 Time for top level: f(n) = n 2 Time for base cases: Dominated?: c = ? 2 = log a / log b Evaluating: T(n) = 4T(n/2)+ n 2 θ(n ) = log a / log b θ(n ) = θ(n 2 ) log 4 / log 2 Hence, T(n) = ? 2= = θ(f(n) log(n) ) = θ(n 2 log(n) ).

312 Time for top level: f(n) = n 2 log 5 n Time for base cases: Dominated?: c = 2 = 2 = log a / log b Evaluating: T(n) = 4T(n/2)+ n 2 log 5 n θ(n ) = log a / log b θ(n ) = θ(n 2 ) log 4 / log 2 k = ? 5 ? Hence, T(n) = ? > -1 = θ(f(n) log(n) ) = θ(n 2 log 6 (n) ).

313 Time for top level: f(n) = n 2 / log 5 n Time for base cases: Dominated?: c = 2 = 2 = log a / log b Evaluating: T(n) = 4T(n/2)+ n 2 / log 5 n θ(n ) = log a / log b θ(n ) = θ(n 2 ) log 4 / log 2 k = ? Hence, T(n) = ? -5 ?< -1 = θ(base cases) = θ(n ) = θ(n 2 ). log a / log b

314 Time for top level: f(n) = n 2 / log n Time for base cases: Dominated?: c = 2 = 2 = log a / log b Evaluating: T(n) = 4T(n/2)+ n 2 / log n θ(n ) = log a / log b θ(n ) = θ(n 2 ) log 4 / log 2 k = ? Hence, T(n) = ? -1 ?= -1 = θ(n c loglog n ) = θ(n 2 loglog n ). Did not do before.

315 Sufficiently close to: T(n) = 4T(n/2)+ n 3 = θ(n 3 ). T 2 (n) = ? Evaluating: T 2 (n) = 4 T 2 (n/2+n 1/2 )+ n 3 θ(n 3 ).

316 Evaluating: T(n) = aT(n-b)+f(n) h = ? n-hb n-ib n-2b n-b T(0) f(n-ib) f(n-2b) f(n-b) f(n) n Work in Level # stack frames Work in stack frame Instance size a aiai a2a2 a 1 n/bn/b a · T(0) a i · f(n-ib) a 2 · f(n-2b) a · f(n-b) 1 · f(n) n/bn/b |base case| = 0 = n-hb h = n / b i 2 1 0 Level Likely dominated by base cases Exponential

317 Evaluating: T(n) = 1T(n-b)+f(n) h = ? Work in Level # stack frames Work in stack frame Instance size 1 1 1 1 1 f(0) f(n-ib) f(n-2b) f(n-b) f(n) n-b n n-hb n-ib n-2b T(0) f(n-ib) f(n-2b) f(n-b) f(n) h = n / b i 2 1 0 Level Total Work T(n) = ∑ i=0..h f(b·i) = θ(f(n)) or θ(n · f(n))

318 End Restart Relevant Mathematics Iterative Algorithms


Download ppt "Relevant Mathematics Lecture 2 Classifying Functions The Time Complexity of an Algorithm Adding Made Easy Recurrence Relations."

Similar presentations


Ads by Google