Download presentation
Presentation is loading. Please wait.
Published byRoy Andrews Modified over 9 years ago
2
Relevant Mathematics Lecture 2 Classifying Functions The Time Complexity of an Algorithm Adding Made Easy Recurrence Relations
3
Start With Some Math Input Size Time Classifying Functions f(i) = n (n) Recurrence Relations T(n) = a T(n/b) + f(n) Adding Made Easy ∑ i=1 f(i). Time Complexity t(n) = (n 2 )
4
Assumed Knowledge Read the section on Existential and Universal Quantifiers, Logarithms and Exponentials g b Loves(b,g) b g Loves(b,g)
5
Classifying Functions Giving an idea of how fast a function grows without going into too much detail.
6
Which are more alike?
7
Mammals
8
Which are more alike?
9
Dogs
10
Classifying Animals Vertebrates BirdsMammals Reptiles Fish Dogs Giraffe
11
Classifying Functions T(n)T(n) 101001,00010,000 log n 36913amoeba n 1/2 31031100bird 101001,00010,000human n log n 306009,000130,000my father n2n2 10010,00010 6 10 8 elephant n3n3 1,00010 6 10 9 10 12 dinosaur 2n2n 1,02410 30 10 300 10 3000 the universe Note: The universe contains approximately 10 50 particles. n
12
Which are more alike? n 1000 n2n2 2n2n
13
Which are more alike? Polynomials n 1000 n2n2 2n2n
14
Which are more alike? 1000n 2 3n 2 2n 3
15
Which are more alike? Quadratic 1000n 2 3n 2 2n 3
16
Classifying Functions? Functions
17
Classifying Functions Functions Constant Logarithmic Poly Logarithmic Polynomial Exponential ExpDouble Exp (log n) 5 n5n5 2 5n 5 log n5 2 n5n5 2 5n 2
18
Classifying Functions? Polynomial
19
Classifying Functions Polynomial LinearQuadratic Cubic ? 5n 2 5n 5n 3 5n 4
20
Logarithmic log 10 n = # digits to write n log 2 n = # bits to write n = 3.32 log 10 n log(n 1000 ) = 1000 log(n) Differ only by a multiplicative constant.
21
Poly Logarithmic (log n) 5 = log 5 n
22
Logarithmic << Polynomial For sufficiently large n log 1000 n << n 0.001
23
Linear << Quadratic For sufficiently large n 10000 n << 0.0001 n 2
24
Polynomial << Exponential For sufficiently large n n 1000 << 2 0.001 n
25
Ordering Functions Functions Constant Logarithmic Poly Logarithmic Polynomial Exponential ExpDouble Exp (log n) 5 n5n5 2 5n 5 log n5 2 n5n5 2 5n 2 <<
26
Which Functions are Constant? 5 1,000,000,000,000 0.0000000000001 -5 0 8 + sin(n) Yes No Yes
27
Which Functions are “Constant”? 5 1,000,000,000,000 0.0000000000001 -5 0 8 + sin(n) Yes No Yes Lie in between 7 9 The running time of the algorithm is a “Constant” It does not depend significantly on the size of the input.
28
Which Functions are Quadratic? n 2 … ?
29
Which Functions are Quadratic? n 2 0.001 n 2 1000 n 2 Some constant times n 2.
30
Which Functions are Quadratic? n 2 0.001 n 2 1000 n 2 5n 2 + 3n + 2log n
31
Which Functions are Quadratic? n 2 0.001 n 2 1000 n 2 5n 2 + 3n + 2log n Lie in between
32
Which Functions are Quadratic? n 2 0.001 n 2 1000 n 2 5n 2 + 3n + 2log n Ignore low-order terms Ignore multiplicative constants. Ignore "small" values of n. Write θ(n 2 ).
33
Which Functions are Polynomial? n 5 … ?
34
Which Functions are Polynomial? n c n 0.0001 n 10000 n to some constant power.
35
Which Functions are Polynomial? n c n 0.0001 n 10000 5n 2 + 8n + 2log n 5n 2 log n 5n 2.5
36
Which Functions are Polynomial? n c n 0.0001 n 10000 5n 2 + 8n + 2log n 5n 2 log n 5n 2.5 Lie in between
37
Which Functions are Polynomials? n c n 0.0001 n 10000 5n 2 + 8n + 2log n 5n 2 log n 5n 2.5 Ignore low-order terms Ignore power constant. Ignore "small" values of n. Write n θ(1)
38
Which Functions are Exponential? 2 n … ?
39
Which Functions are Exponential? 2 n 2 0.0001 n 2 10000 n n times some constant power raises to the power of 2.
40
Which Functions are Exponential? 2 n 2 0.0001 n 2 10000 n 8 n 2 n / n 100 2 n · n 100 too small? too big?
41
Which Functions are Exponential? 2 n 2 0.0001 n 2 10000 n 8 n 2 n / n 100 2 n · n 100 = 2 3n > 2 0.5n < 2 2n Lie in between
42
Which Functions are Exponential? 2 n 2 0.0001 n 2 10000 n 8 n 2 n / n 100 2 n · n 100 = 2 3n > 2 0.5n < 2 2n 2 0.5n > n 100 2 n = 2 0.5n · 2 0.5n > n 100 · 2 0.5n 2 n / n 100 > n 0.5n
43
Which Functions are Exponential? Ignore low-order terms Ignore base. Ignore "small" values of n. Ignore polynomial factors. Write 2 θ(n) 2 n 2 0.0001 n 2 10000 n 8 n 2 n / n 100 2 n · n 100
44
Classifying Functions Functions Constant Logarithmic Poly Logarithmic PolynomialExponential Exp Double Exp (log n) θ(1) n θ(1) 2 θ(n) θ(log n)θ(1) 2 n θ(1) 2 θ(n) 2
45
Notations Theta f(n) = θ(g(n))f(n) ≈ c g(n) BigOh f(n) = O(g(n))f(n) ≤ c g(n) Omega f(n) = Ω(g(n))f(n) ≥ c g(n) Little Oh f(n) = o(g(n))f(n) << c g(n) Little Omega f(n) = ω(g(n))f(n) >> c g(n)
46
Definition of Theta f(n) = θ(g(n))
47
Definition of Theta f(n) is sandwiched between c 1 g(n) and c 2 g(n) f(n) = θ(g(n))
48
Definition of Theta f(n) is sandwiched between c 1 g(n) and c 2 g(n) for some sufficiently small c 1 (= 0.0001) for some sufficiently large c 2 (= 1000) f(n) = θ(g(n))
49
Definition of Theta For all sufficiently large n f(n) = θ(g(n))
50
Definition of Theta For all sufficiently large n For some definition of “sufficiently large” f(n) = θ(g(n))
51
Definition of Theta 3n 2 + 7n + 8 = θ(n 2 )
52
Definition of Theta 3n 2 + 7n + 8 = θ(n 2 ) c 1 ·n 2 3n 2 + 7n + 8 c 2 ·n 2 ??
53
Definition of Theta 3n 2 + 7n + 8 = θ(n 2 ) 3·n 2 3n 2 + 7n + 8 4·n 2 34
54
Definition of Theta 3n 2 + 7n + 8 = θ(n 2 ) 3·1 2 3·1 2 + 7·1 + 8 4·1 2 1 False
55
Definition of Theta 3n 2 + 7n + 8 = θ(n 2 ) 3·7 2 3·7 2 + 7·7 + 8 4·7 2 7 False
56
Definition of Theta 3n 2 + 7n + 8 = θ(n 2 ) 3·8 2 3·8 2 + 7·8 + 8 4·8 2 8 True
57
Definition of Theta 3n 2 + 7n + 8 = θ(n 2 ) 3·9 2 3·9 2 + 7·9 + 8 4·9 2 9 True
58
Definition of Theta 3n 2 + 7n + 8 = θ(n 2 ) 3·10 2 3·10 2 + 7·10 + 8 4·10 2 10 True
59
Definition of Theta 3n 2 + 7n + 8 = θ(n 2 ) 3·n 2 3n 2 + 7n + 8 4·n 2 ?
60
Definition of Theta 3n 2 + 7n + 8 = θ(n 2 ) 3·n 2 3n 2 + 7n + 8 4·n 2 n 8 8
61
Definition of Theta 3n 2 + 7n + 8 = θ(n 2 ) 3·n 2 3n 2 + 7n + 8 4·n 2 True n 8
62
Definition of Theta 3n 2 + 7n + 8 = θ(n 2 ) 3·n 2 3n 2 + 7n + 8 4·n 2 7n + 8 1 · n 2 7 + 8 / n 1 · n n 8 True
63
Definition of Theta 3n 2 + 7n + 8 = θ(n 2 ) 3·n 2 3n 2 + 7n + 8 4·n 2 348 n 8 True
64
Definition of Theta n 2 = θ(n 3 )
65
Definition of Theta n 2 = θ(n 3 ) c 1 · n 3 n 2 c 2 · n 3 ??
66
Definition of Theta n 2 = θ(n 3 ) 0 · n 3 n 2 c 2 · n 3 0 True, but ?
67
Definition of Theta n 2 = θ(n 3 ) 0 Constants c1 and c2 must be positive! False
68
Definition of Theta 3n 2 + 7n + 8 = θ(n)
69
Definition of Theta 3n 2 + 7n + 8 = θ(n) c 1 ·n 3n 2 + 7n + 8 c 2 ·n ??
70
Definition of Theta 3n 2 + 7n + 8 = θ(n) 3·n 3n 2 + 7n + 8 100·n 3 100
71
Definition of Theta 3n 2 + 7n + 8 = θ(n) 3·n 3n 2 + 7n + 8 100·n ?
72
Definition of Theta 3n 2 + 7n + 8 = θ(n) 3·100 3·100 2 + 7·100 + 8 100·100 100 False
73
Definition of Theta 3n 2 + 7n + 8 = θ(n) 3·n 3n 2 + 7n + 8 10,000·n 3 10,000
74
Definition of Theta 3n 2 + 7n + 8 = θ(n) 3·10,000 3·10,000 2 + 7·10,000 + 8 100·10,000 10,000 False
75
Definition of Theta 3n 2 + 7n + 8 = θ(n) What is the reverse statement?
76
Understand Quantifiers!!! SamMary BobBeth John Marilin Monro FredAnn SamMary BobBeth John Marilin Monro FredAnn b, Loves(b, MM) b, Loves(b, MM) b, Loves(b, MM)] b, Loves(b, MM)]
77
Definition of Theta 3n 2 + 7n + 8 = θ(n) The reverse statement
78
Definition of Theta 3n 2 + 7n + 8 = θ(n) 3n 2 + 7n + 8 > 100·n 3 100 ?
79
Definition of Theta 3n 2 + 7n + 8 = θ(n) 3 · 100 2 + 7 · 100 + 8 > 100 · 100 3 100 True 100
80
Definition of Theta 3n 2 + 7n + 8 = θ(n) 3n 2 + 7n + 8 > 10,000·n 3 10,000 ?
81
Definition of Theta 3n 2 + 7n + 8 = θ(n) 3 · 10,000 2 + 7 · 10,000 + 8 > 10,000 · 10,000 3 10,000 True 10,000
82
Definition of Theta 3n 2 + 7n + 8 = θ(n) 3n 2 + 7n + 8 > c 2 ·n c1c1 c2c2 ?
83
Definition of Theta 3n 2 + 7n + 8 = θ(n) 3 · c 2 2 + 7 · c 2 + 8 > c 2 · c 2 c1c1 c2c2 True c2c2
84
Definition of Theta 3n 2 + 7n + 8 = θ(n) 3n 2 + 7n + 8 > c 2 ·n c1c1 c2c2 ? n0n0
85
Definition of Theta 3n 2 + 7n + 8 = θ(n) 3 · c 2 2 + 7 · c 2 + 8 > c 2 · c 2 c1c1 max(c 2,n 0 ) True c2c2 n0n0
86
Definition of Theta 3n 2 + 7n + 8 = g(n) θ(1) c 1, c 2, n 0, n n 0 g(n) c1 f(n) g(n) c2 3n 2 + 7n + 8 = n θ(1)
87
Definition of Theta 3n 2 + 7n + 8 = n θ(1) n c1 3n 2 + 7n + 8 n c2 c 1, c 2, n 0, n n 0 g(n) c1 f(n) g(n) c2 ??
88
Definition of Theta 3n 2 + 7n + 8 = n θ(1) n 2 3n 2 + 7n + 8 n 3 c 1, c 2, n 0, n n 0 g(n) c1 f(n) g(n) c2 23
89
Definition of Theta 3n 2 + 7n + 8 = n θ(1) n 2 3n 2 + 7n + 8 n 3 c 1, c 2, n 0, n n 0 g(n) c1 f(n) g(n) c2 23? n ?
90
Definition of Theta 3n 2 + 7n + 8 = n θ(1) n 2 3n 2 + 7n + 8 n 3 c 1, c 2, n 0, n n 0 g(n) c1 f(n) g(n) c2 235 n 5
91
Definition of Theta 3n 2 + 7n + 8 = n θ(1) n 2 3n 2 + 7n + 8 n 3 True c 1, c 2, n 0, n n 0 g(n) c1 f(n) g(n) c2 235 n 5
92
Order of Quantifiers f(n) = θ(g(n)) ?
93
Understand Quantifiers!!! One girl Could be a separate girl for each boy. SamMary BobBeth John Marilin Monro FredAnn SamMary BobBeth John Marilin Monro FredAnn
94
Order of Quantifiers No! It cannot be a different c 1 and c 2 for each n. f(n) = θ(g(n))
95
Other Notations Theta f(n) = θ(g(n))f(n) ≈ c g(n) BigOh f(n) = O(g(n))f(n) ≤ c g(n) Omega f(n) = Ω(g(n))f(n) ≥ c g(n) Little Oh f(n) = o(g(n))f(n) << c g(n) Little Omega f(n) = ω(g(n))f(n) >> c g(n)
96
BigOh Notation n 2 = O(n 3 ) n 3 = O(n 2 )
97
BigOh Notation O(n 2 ) = O(n 3 ) O(n 3 ) = O(n 2 ) Odd Notation f(n) = O(g(n)) Standard f(n) ≤ O(g(n)) Stresses one function dominating another. f(n) O(g(n)) Stress function is member of class.
98
The Time Complexity of an Algorithm Specifies how the running time depends on the size of the input.
99
Purpose?
100
Purpose To estimate how long a program will run. To estimate the largest input that can reasonably be given to the program. To compare the efficiency of different algorithms. To help focus on the parts of code that are executed the largest number of times. To choose an algorithm for an application.
101
Time Complexity Is a Function Specifies how the running time depends on the size of the input. A function mapping “size” of input “time” T(n) executed.
102
Definition of Time?
103
Definition of Time # of seconds (machine dependent). # lines of code executed. # of times a specific operation is performed (e.g., addition). Which?
104
Definition of Time # of seconds (machine dependent). # lines of code executed. # of times a specific operation is performed (e.g., addition). These are all reasonable definitions of time, because they are within a constant factor of each other.
105
Size of Input Instance? 83920
106
Size of Input Instance Size of paper # of bits # of digits Value - n = 2 in 2 - n = 17 bits - n = 5 digits - n = 83920 2’’ 83920 5 1’’ Which are reasonable?
107
Size of Input Instance Size of paper # of bits # of digits Value - n = 2 in 2 - n = 17 bits - n = 5 digits - n = 83920 Intuitive 2’’ 83920 5 1’’
108
Size of Input Instance Size of paper # of bits # of digits Value - n = 2 in 2 - n = 17 bits - n = 5 digits - n = 83920 Intuitive Formal 2’’ 83920 5 1’’
109
Size of Input Instance Size of paper # of bits # of digits Value - n = 2 in 2 - n = 17 bits - n = 5 digits - n = 83920 Intuitive Formal Reasonable # of bits = 3.32 * # of digits 2’’ 83920 5 1’’
110
Size of Input Instance Size of paper # of bits # of digits Value - n = 2 in 2 - n = 17 bits - n = 5 digits - n = 83920 Intuitive Formal Reasonable Unreasonable # of bits = log 2 (Value) Value = 2 # of bits 2’’ 83920 5 1’’
111
Two Example Algorithms Sum N array entries: A(1) + A(2) + A(3) + … Factor value N: Input N=5917 & Output N=97*61. Algorithm N/2, N/3, N/4, …. ? Time?
112
Two Example Algorithms Sum N array entries: A(1) + A(2) + A(3) + … Factor value N: Input N=5917 & Output N=97*61. Algorithm N/2, N/3, N/4, …. ? Time = N
113
Two Example Algorithms Sum N array entries: A(1) + A(2) + A(3) + … Factor value N: Input N=5917 & Output N=97*61. Algorithm N/2, N/3, N/4, …. ? Is this reasonable? Time = N
114
Two Example Algorithms Sum N array entries: A(1) + A(2) + A(3) + … Factor value N: Input N=5917 & Output N=97*61. Algorithm N/2, N/3, N/4, …. ? No! Time = N One is considered fast and the other slow!
115
Two Example Algorithms Sum N array entries: A(1) + A(2) + A(3) + … Factor value N: Input N=5917 & Output N=97*61. Algorithm N/2, N/3, N/4, …. ? Size of Input Instance?
116
Two Example Algorithms Sum N array entries: A(1) + A(2) + A(3) + … Factor value N: Input N=5917 & Output N=97*61. Algorithm N/2, N/3, N/4, …. ? size n = N size n = log N
117
Two Example Algorithms Sum N array entries: A(1) + A(2) + A(3) + … Factor value N: Input N=5917 & Output N=97*61. Algorithm N/2, N/3, N/4, …. ? Time as function of input size? size n = N size n = log N
118
Two Example Algorithms Sum N array entries: A(1) + A(2) + A(3) + … Factor value N: Input N=5917 & Output N=97*61. Algorithm N/2, N/3, N/4, …. ? Time = N = n Time = N = 2 n size n = N size n = log N
119
Two Example Algorithms Sum N array entries: A(1) + A(2) + A(3) + … Factor value N: Input N=5917 & Output N=97*61. Algorithm N/2, N/3, N/4, …. ? Linear vs Exponential Time! Time = N = n Time = N = 2 n size n = N size n = log N
120
Size of Input Instance? 14,23,25,30,31,52,62,79,88,98
121
Size of Input Instance # of elements - n = 10 elements 14,23,25,30,31,52,62,79,88,98 10
122
Size of Input Instance # of elements - n = 10 elements 14,23,25,30,31,52,62,79,88,98 10 Is this reasonable?
123
Size of Input Instance # of elements - n = 10 elements ~ Reasonable 14,23,25,30,31,52,62,79,88,98 10 If each element has size c # of bits = c * # of elements
124
Size of Input Instance # of elements - n = 10 elements Reasonable 14,23,25,30,31,52,62,79,88,98 10 If each element is in [1..n] each element has size log n # of bits = n log n ≈ n
125
Time Complexity Is a Function Specifies how the running time depends on the size of the input. A function mapping # of bits n needed to represent the input # of operations T(n) executed.
126
Which Input of size n? There are 2 n inputs of size n. Which do we consider for the time T(n)?
127
Which Input of size n? Typical Input Average Case Worst Case
128
Which Input of size n? Typical InputBut what is typical? Average CaseFor what distribution? Worst CaseTime for all inputs is bound. Easiest to compute
129
What is the height of tallest person in the class? Bigger than this? Need to look at only one person Need to look at every person Smaller than this?
130
Time Complexity of Algorithm O(n 2 ): Prove that for every input of size n, the algorithm takes no more than cn 2 time. Ω(n 2 ): Find one input of size n, for which the algorithm takes at least this much time. θ (n 2 ): Do both. The time complexity of an algorithm is the largest time required on any input of size n.
131
Time Complexity of Problem O(n 2 ): Provide an algorithm that solves the problem in no more than this time. Ω(n 2 ): Prove that no algorithm can solve it faster. θ (n 2 ): Do both. The time complexity of a problem is the time complexity of the fastest algorithm that solves the problem.
132
Adding The Classic Techniques Evaluating ∑ i=1 f(i). n
133
Gauss ∑ i=1..n i = 1 + 2 + 3 +... + n = ? Arithmetic Sum
134
1+2+3+...+ n-1+n=S n+n-1+n-2+... +2+1=S (n+1) + (n+1) + (n+1) +... + (n+1) + (n+1) = 2S n (n+1) = 2S
135
1+2+3+...+ n-1+n=S n+n-1+n-2+... +2+1=S (n+1) + (n+1) + (n+1) +... + (n+1) + (n+1) = 2S n (n+1) = 2S
136
1+2+3+...+ n-1+n=S n+n-1+n-2+... +2+1=S (n+1) + (n+1) + (n+1) +... + (n+1) + (n+1) = 2S n (n+1) = 2S
137
1+2+3+...+ n-1+n=S n+n-1+n-2+... +2+1=S (n+1) + (n+1) + (n+1) +... + (n+1) + (n+1) = 2S n (n+1) = 2S
138
Let’s restate this argument using a geometric representation Algebraic argument
139
1 2........ n = number of white dots.
140
1 2........ n = number of white dots = number of yellow dots n....... 2 1
141
n+1 n+1 n+1 n+1 n+1 = number of white dots = number of yellow dots n n n n n n There are n(n+1) dots in the grid
142
n+1 n+1 n+1 n+1 n+1 = number of white dots = number of yellow dots n n n n n n Note = (# of terms · last term))
143
Gauss ∑ i=1..n i = 1 + 2 + 3 +... + n = (# of terms · last term) Arithmetic Sum True when ever terms increase slowly
144
∑ i=0..n 2 i = 1 + 2 + 4 + 8 +... + 2 n = ? Geometric Sum
146
∑ i=0..n 2 i = 1 + 2 + 4 + 8 +... + 2 n = 2 · last term - 1 Geometric Sum
147
∑ i=0..n r i = r 0 + r 1 + r 2 +... + r n = ? Geometric Sum
148
S Srrrr...rr S 1r S r1 r1 23nn1 n1 n1 1rrr... 23 r n Geometric Sum
149
∑ i=0..n r i r1 r1 n1 Geometric Sum When r>1?
150
∑ i=0..n r i r1 r1 n1 Geometric Sum θ(rn)θ(rn) Biggest Term When r>1
151
∑ i=0..n r i = r 0 + r 1 + r 2 +... + r n = (biggest term) Geometric Increasing True when ever terms increase quickly
152
∑ i=0..n r i Geometric Sum When r<1? 1 r n1
153
∑ i=0..n r i Geometric Sum 1 r n1 θ(1) When r<1 Biggest Term
154
∑ i=0..n r i = r 0 + r 1 + r 2 +... + r n = (1) Bounded Tail True when ever terms decrease quickly
155
∑ i=1..n 1 / i = 1 / 1 + 1 / 2 + 1 / 3 + 1 / 4 + 1 / 5 + …+ 1 / n = ? Harmonic Sum
156
f(i) = 1 ∑ i=1..n f(i) = n n Sum of Shrinking Function
157
f(i) = ? ∑ i=1..n f(i) = n 1/2 n Sum of Shrinking Function
158
f(i) = 1/2 i ∑ i=1..n f(i) = 2 Sum of Shrinking Function
159
f(i) = 1/i ∑ i=1..n f(i) = ? n Sum of Shrinking Function
160
Harmonic Sum
161
∑ i=1..n 1 / i = 1 / 1 + 1 / 2 + 1 / 3 + 1 / 4 + 1 / 5 + …+ 1 / n = (log(n)) Harmonic Sum
162
Approximating Sum by Integrating The area under the curve approximates the sum ∑ i=1..n f(i) ≈ ∫ x=1..n f(x) dx
163
Approximating Sum by Integrating 1 / c+1 x c+1 d dx = x c ∫ x=1..n x c dx = 1 / c+1 n c+1 ∑ i=1..n i c ≈ Arithmetic Sums θ(# of terms · last term) True when ever terms increase slowly = θ(n · n c+1 )
164
Approximating Sum by Integrating 1 / ln(b) e ln(b)x d dx = e ln(b)x = b x ∫ x=1..n b x dx = 1 / ln(b) b x ∑ i=1..n b i ≈ Geometric Sums θ(last term) True when ever terms increase quickly = θ(b n )
165
Harmonic Sum Approximating Sum by Integrating
166
Problem: Integrating may be hard too.
167
Outline II) Math proofs of sums V) Ability to know the answer fast I) What is the sum Eg. ∑ i=1..n f(i) = ∑ i=1..n 1 / i 0.9999 =θ(n 0.0001 ) III) Pattern of sums ∑ i=1..n f(i) = θ(n · f(n)) IV) Intuition why this is the sum I flash it up If you follow great. If not don’t panic.
168
Adding Made Easy We will now classify (most) functions f(i) into four classes: –Geometric Like –Arithmetic Like –Harmonic –Bounded Tail
169
Adding Made Easy We will now classify (most) functions f(i) into four classes For each class, we will give an easy rule for approximating it’s sum θ( ∑ i=1..n f(i) )
170
Classifying Animals Vertebrates Birds Mammals Reptiles Fish Dogs Giraffe Mammal Complex social networks Dog Man’s best friend
171
Classifying Functions Functions Poly. Exp. 2 θ(n) ∑ i=1..n f(i) = θ(f(n)) 8 · 2 n / n 100 + n 3 θ(2 n / n 100 ) 8 · 2 n + n 3 n θ(1) 2 θ(n) θ(2n)θ(2n) f(n) = 8 · 2 n / n 100 + n 3 θ(2 n / n 100 ) ∑ i=1..n f(i) = θ(2 n / n 100 ) 2 0.5n << 2 n 8 · 2 n / n 100 + n 3 Significant Less significant Irrelevant
172
Adding Made Easy 11 1 2 3 4 Four Classes of Functions
173
Adding Made Easy
174
If the terms f(i) grow sufficiently quickly, then the sum will be dominated by the largest term. Silly example: 1+2+3+4+5+ 1,000,000,000 ≈ 1,000,000,000 f(i) 2 Ω(n) ∑ i=1..n f(i) = θ(f(n)) Geometric Like:
175
If the terms f(i) grow sufficiently quickly, then the sum will be dominated by the largest term. Classic example: ? f(i) 2 Ω(n) ∑ i=1..n f(i) = θ(f(n)) Geometric Like:
176
If the terms f(i) grow sufficiently quickly, then the sum will be dominated by the largest term. Classic example: ∑ i=1..n 2 i = 2 n+1 -1 ≈ 2 f(n) f(i) 2 Ω(n) ∑ i=1..n f(i) = θ(f(n)) Geometric Like:
177
If the terms f(i) grow sufficiently quickly, then the sum will be dominated by the largest term. For which functions f(i) is this true? How fast and how slow can it grow? f(i) 2 Ω(n) ∑ i=1..n f(i) = θ(f(n)) Geometric Like:
178
r1 r1 n1 θ( ) r n Last Term when r>1. ∑ i=1..n r i 1rrr... 23 r n θ(f(n)) ∑ i=1..n (1.0001) i ≈ 10,000 (1.0001) n = 10,000 f(n) Lower Extreme: Upper Extreme: ∑ i=1..n (1000) i ≈ 1.001(1000) n = 1.001 f(n) Recall, when f(n) = r i = 2 θ(n) f(i) 2 Ω(n) ∑ i=1..n f(i) = θ(f(n)) Geometric Like:
179
Because the constant is sooo big, the statement is just barely true. ∑ i=1..n (1.0001) i ≈ 10,000 (1.0001) n = 10,000 f(n) Lower Extreme: Upper Extreme: ∑ i=1..n (1000) i ≈ 1.001(1000) n = 1.001 f(n) f(i) 2 Ω(n) ∑ i=1..n f(i) = θ(f(n)) Geometric Like:
180
∑ i=1..n (1.0001) i ≈ 10,000 (1.0001) n = 10,000 f(n) Lower Extreme: Upper Extreme: ∑ i=1..n (1000) i ≈ 1.001(1000) n = 1.001 f(n) Even bigger? f(i) 2 Ω(n) ∑ i=1..n f(i) = θ(f(n)) Geometric Like:
181
2n2n 2i2i ∑ i=1..n 2 2 ≈ 2 2 = 1f(n) No Upper Extreme: Even bigger? ∑ i=1..n (1.0001) i ≈ 10,000 (1.0001) n = 10,000 f(n) Lower Extreme: f(i) 2 Ω(n) ∑ i=1..n f(i) = θ(f(n)) Geometric Like:
182
2n2n 2i2i ∑ i=1..n 2 2 ≈ 2 2 = 1f(n) No Upper Extreme: Functions in between? ∑ i=1..n (1.0001) i ≈ 10,000 (1.0001) n = 10,000 f(n) Lower Extreme: f(i) 2 Ω(n) ∑ i=1..n f(i) = θ(f(n)) Geometric Like:
183
∑ i=1..n 2 i = 2 · 2 n –2 = 2 1 + 2 2 + 2 3 + 2 4 +…+ 2 n 8 · [ ] 8·8· 8·8· 8·8· 8·8· 8·8· 8·8· = θ( 2 n ) 1 100 2 100 3 100 4 100 n 100 i 100 n 100 + i 3 + 1 3 + 2 3 + 3 3 + 4 3 + n 3 Dominated by the largest term. = θ(f(n)) f(n) = 2 n 8·8· n 100 + n 3 = θ( 2 n ) n 100 f(i) 2 Ω(n) ∑ i=1..n f(i) = θ(f(n)) Geometric Like: n 100 ≈
184
f(i) 2 Ω(n) ∑ i=1..n f(i) = θ(f(n)) Geometric Like: f(n) = 2 n 8·8· n 100 ∑ i=1..n f(i) f(n) c · f(n) f(i) · f(n) f(i) · f(i +1 ) EasyHard (i +1 ) 100 i 100 2 = (1 + 1 / i ) 100 1 2 1.9 = 8 · 2 (i+1) (i +1 ) 100 f(i +1 ) f(i) 8·2i8·2i i 100 = 1/.51 · f(i +1 ) f(i)
185
f(i) 2 Ω(n) ∑ i=1..n f(i) = θ(f(n)) Geometric Like: f(n) = 2 n 8·8· n 100 ∑ i=1..n f(i) f(n) c · f(n) f(i) · f(n) · f(i +2 ) · f(i +1 ) f(i) · f(i +1 ) f(i) · f(i +3 ) .51 (n-i) ·f(i +(n-i) ) .51 (n-i) ·f( n ) f(i) .51 (n-i) ·f( n ) Eg. i = n, f(n) .51 (n-n) ·f( n ) 1·f( n ) i = 0, f(0) .51 n ·f( n )
186
f(i) 2 Ω(n) ∑ i=1..n f(i) = θ(f(n)) Geometric Like: f(n) = 2 n 8·8· n 100 ∑ i=1..n f(i) f(n) c · f(n) ∑ i=1..n f(i) ∑ i=1..n.51 (n-i) ·f( n ) = θ(1) · f(n) f(i) · f(n) · f(i +1 ) f(i) f(i) .51 (n-i) ·f( n ) = [∑ i=1..n.51 (n-i) ] · f( n )
187
Functions Poly. Exp. 2 θ(n) ∑ i=1..n f(i) = θ(f(n)) 8 · 2 n / n 100 + n 3 θ(2 n / n 100 ) 8 · 2 n + n 3 n θ(1) 2 θ(n) θ(2n)θ(2n) f(n) = 8 · 2 n / n 100 + n 3 θ(2 n / n 100 ) ∑ i=1..n f(i) = θ(2 n / n 100 ) 2 0.5n << 2 n 8 · 2 n / n 100 + n 3 Significant Less significant Irrelevant f(i) 2 Ω(n) ∑ i=1..n f(i) = θ(f(n)) Geometric Like:
188
If f(n) = c b an n d log e (n) c ? a ? b ? d ? e ? f(n) = Ω, θ ? then ∑ i=1..n f(i) = θ(f(n)). 2 Ω(n) > 0 0 1 (- , ) f(i) 2 Ω(n) ∑ i=1..n f(i) = θ(f(n)) Geometric Like:
189
f(i) 2 Ω(n) ∑ i=1..n f(i) = θ(f(n)) Geometric Like:
190
All functions in 2 Ω(n) ? Maybe not. f(i) 2 Ω(n) ∑ i=1..n f(i) = θ(f(n)) Geometric Like:
191
Functions that oscillate continually do not have the property. f(i) 2 Ω(n) ∑ i=1..n f(i) = θ(f(n)) Geometric Like:
192
Functions expressed with +, -, , , exp, log do not oscillate continually. They are well behaved for sufficiently large n. These do have the property. f(i) 2 Ω(n) ∑ i=1..n f(i) = θ(f(n)) Geometric Like:
193
Adding Made Easy Done
194
Adding Made Easy
195
If most of the terms f(i) have roughly the same value, then the sum is roughly the number of terms, n, times this value. Silly example: 1,001 + 1,002 + 1,003 + 1,004 + 1,005 ≈ 5 · 1,000 f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:
196
If most of the terms f(i) have roughly the same value, then the sum is roughly the number of terms, n, times this value. Another silly example: ∑ i=1..n 1 = n · 1 f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:
197
If most of the terms f(i) have roughly the same value, then the sum is roughly the number of terms, n, times this value. Is the statement true for this function? ∑ i=1..n i = 1 + 2 + 3 +... + n f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:
198
If most of the terms f(i) have roughly the same value, then the sum is roughly the number of terms, n, times this value. Is the statement true for this function? ∑ i=1..n i = 1 + 2 + 3 +... + n The terms are not roughly the same. f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:
199
But half the terms are roughly the same. ∑ i=1..n i = 1 +... + n/2 +... + n f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:
200
But half the terms are roughly the same and the sum is roughly the number terms, n, times this value ∑ i=1..n i = 1 +... + n/2 +... + n ∑ i=1..n i = θ(n · n) f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:
201
Is the statement true for this function? ∑ i=1..n i 2 = 1 2 + 2 2 + 3 2 +... + n 2 Even though, the terms are not roughly the same. f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:
202
Again half the terms are roughly the same. ∑ i=1..n i = 1 2 +... + (n/2) 2 +... + n 2 1 / 4 n 2 f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:
203
Again half the terms are roughly the same. ∑ i=1..n i = 1 2 +... + (n/2) 2 +... + n 2 1 / 4 n 2 ∑ i=1..n i 2 = θ(n · n 2 ) f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:
204
∑ i=1..n f(i) ≈ area under curve f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:
205
area of small square ∑ i=1..n f(i) ≈ area under curve area of big square f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:
206
n / 2 · f( n / 2 ) = area of small square ∑ i=1..n f(i) ≈ area under curve area of big square = n · f(n) f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:
207
θ(n · f(n)) = n / 2 · f( n / 2 ) = area of small square ∑ i=1..n f(i) ≈ area under curve area of big square = n · f(n) f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:
208
θ(n · f(n)) = n / 2 · f( n / 2 ) = area of small square ∑ i=1..n f(i) ≈ area under curve area of big square = n · f(n) ? f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:
209
∑ i=1..n i 2 = 1 2 + 2 2 + 3 2 +... + n 2 f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like: f(i) = n 2 f( n / 2 ) = θ(f(n)) The key property is = ?
210
The key property is f( n / 2 ) = (n/2) 2 = 1 / 4 n 2 = θ( n 2 ) = θ(f(n)) ∑ i=1..n i 2 = 1 2 + 2 2 + 3 2 +... + n 2 f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like: f(i) = n 2 = θ(n·f(n)) = θ(n · n 2 )
211
∑ i=1..n f(i) = ? f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like: f(i) = n θ(1)
212
∑ i=1..n i r = 1 r + 2 r + 3 r +... + n r f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like: f(i) = n θ(1) f( n / 2 ) = θ(f(n)) The key property is
213
f( n / 2 ) = (n/2) r = 1 / 2 r n r = θ( n r ) = θ(f(n)) ∑ i=1..n i r = 1 r + 2 r + 3 r +... + n r f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like: = θ(n·f(n)) = θ(n · n r ) f(i) = n θ(1)
214
∑ i=1..n 2 i = 2 1 + 2 2 + 2 3 +... + 2 n f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like: f(i) = n θ(1) f( n / 2 ) = θ(f(n)) The key property is
215
∑ i=1..n 2 i = 2 1 + 2 2 + 2 3 +... + 2 n f( n / 2 ) = 2 (n/2) = θ( 2 n ) = θ(f(n)) f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like: f(i) = n θ(1) = θ(n·f(n)) = θ(n · 2 n )
216
∑ i=1..n 1 = n · 1 = n · f(n) Middle Extreme: Upper Extreme: ∑ i=1..n i 1000 = 1 / 1001 n 1001 = 1 / 1001 n · f(n) All functions in between. f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:
217
Adding Made Easy Half done
218
f(i) = 1 ∑ i=1..n f(i) = n n Sum of Shrinking Function
219
f(i) = ? ∑ i=1..n f(i) = n 1/2 n Sum of Shrinking Function 1/i 1/2
220
f(i) = 1/i ∑ i=1..n f(i) = log n n Sum of Shrinking Function
221
f(i) = 1/2 i ∑ i=1..n f(i) = 2 Sum of Shrinking Function
222
If most of the terms f(i) have roughly the same value, then the sum is roughly the number of terms, n, times this value. Does the statement hold for functions f(i) that shrink? f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:
223
If most of the terms f(i) have roughly the same value, then the sum is roughly the number of terms, n, times this value. ∑ i=1..n 1 / i = 1 / 1 + 1 / 2 + 1 / 3 + 1 / 4 + 1 / 5 + … + 1 / n Does the statement hold for the Harmonic Sum? f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:
224
Does the statement hold for the Harmonic Sum? ∑ i=1..n 1 / i = 1 / 1 + 1 / 2 + 1 / 3 + 1 / 4 + 1 / 5 + … + 1 / n ∑ i=1..n f(i) = ? θ(n · f(n)) f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:
225
Does the statement hold for the Harmonic Sum? ∑ i=1..n 1 / i = 1 / 1 + 1 / 2 + 1 / 3 + 1 / 4 + 1 / 5 + … + 1 / n ∑ i=1..n f(i) θ(n · f(n)) = ∑ i=1..n 1 / i = ? f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:
226
Does the statement hold for the Harmonic Sum? ∑ i=1..n 1 / i = 1 / 1 + 1 / 2 + 1 / 3 + 1 / 4 + 1 / 5 + … + 1 / n ∑ i=1..n f(i) θ(n · f(n)) = ∑ i=1..n 1 / i =θ(log n) f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:
227
Does the statement hold for the Harmonic Sum? ∑ i=1..n 1 / i = 1 / 1 + 1 / 2 + 1 / 3 + 1 / 4 + 1 / 5 + … + 1 / n ∑ i=1..n f(i) = θ(n · f(n)) = ∑ i=1..n 1 / i =θ(log n) ? f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:
228
Does the statement hold for the Harmonic Sum? ∑ i=1..n 1 / i = 1 / 1 + 1 / 2 + 1 / 3 + 1 / 4 + 1 / 5 + … + 1 / n ∑ i=1..n f(i) = θ(n · f(n)) = ∑ i=1..n 1 / i =θ(log n) θ(1) = θ(n · 1 / n ) f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:
229
Does the statement hold for the Harmonic Sum? ∑ i=1..n 1 / i = 1 / 1 + 1 / 2 + 1 / 3 + 1 / 4 + 1 / 5 + … + 1 / n ∑ i=1..n f(i) = θ(n · f(n)) = ∑ i=1..n 1 / i =θ(log n) θ(1) = θ(n · 1 / n ) ≠ No the statement does not hold! f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:
230
Adding Made Easy not included
231
Does the statement hold for the almost Harmonic Sum? ∑ i=1..n 1 / i 0.9999 Shrinks slightly slower than harmonic. f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:
232
Does the statement hold for the almost Harmonic Sum? ∑ i=1..n 1 / i 0.9999 ∑ i=1..n f(i) = θ(n · f(n)) = ∑ i=1..n 1 / i 0.9999 = ? f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:
233
Does the statement hold for the almost Harmonic Sum? ∑ i=1..n 1 / i 0.9999 ∑ i=1..n f(i) = θ(n · f(n)) = ∑ i=1..n 1 / i 0.9999 =θ(n 0.0001 ) f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:
234
Does the statement hold for the almost Harmonic Sum? ∑ i=1..n 1 / i 0.9999 ∑ i=1..n f(i) = θ(n · f(n)) = ∑ i=1..n 1 / i 0.9999 =θ(n 0.0001 ) ? f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:
235
Does the statement hold for the almost Harmonic Sum? ∑ i=1..n 1 / i 0.9999 ∑ i=1..n f(i) = θ(n · f(n)) = ∑ i=1..n 1 / i 0.9999 =θ(n 0.0001 ) θ(n 0.0001 ) = θ(n · 1 / n 0.9999 ) f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:
236
Does the statement hold for the almost Harmonic Sum? ∑ i=1..n 1 / i 0.9999 ∑ i=1..n f(i) = θ(n · f(n)) = ∑ i=1..n 1 / i 0.9999 =θ(n 0.0001 ) θ(n 0.0001 ) = θ(n · 1 / n 0.9999 ) = The statement does hold! f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:
237
∑ i=1..n 1 = n · 1 = n · f(n) Middle Extreme: Lower Extreme: ∑ i=1..n 1 / i 0.9999 = θ(n 0.0001 ) = θ(n · f(n)) All functions in between. f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:
238
∑ i=1..n 1 = n · 1 = n · f(n) Middle Extreme: Lower Extreme: ∑ i=1..n 1 / i 0.9999 = θ(n 0.0001 ) = θ(n · f(n)) Upper Extreme: ∑ i=1..n i 1000 = 1 / 1001 n 1001 = 1 / 1001 n · f(n) f(i) = n θ(1)-1 ∑ i=1..n f(i) = θ(n·f(n)) Arithmetic Like:
239
Arithmetic Like If f(n) = c b an n d log e (n) c ? a ? b ? d ? e ? f(n) = Ω, θ ? then ∑ i=1..n f(i) = θ(n · f(n)). n -1+θ(1) > 0 0 or b 1 > -1 (- , ) (For +, -, , , exp, log functions f(n)) Conclusion
240
Adding Made Easy Done
241
Adding Made Easy Harmonic
242
Harmonic Sum ∑ i=1..n 1 / i = 1 / 1 + 1 / 2 + 1 / 3 + 1 / 4 + 1 / 5 + …+ 1 / n = (log(n))
243
Adding Made Easy
244
If the terms f(i) decrease towards zero sufficiently quickly, then the sum will be a constant. The classic example ∑ i=0..n 1 / 2 i = 1 + 1 / 2 + 1 / 4 + 1 / 8 + … = 2. f(n) n -1-Ω(1) ∑ i=1..n f(i) = θ(1) Bounded Tail:
245
If f(i) decays even faster, then the tail of the sum is more bounded. 2i2i ∑ i=1..n 2 2 = θ(1). 1 f(n) n -1-Ω(1) ∑ i=1..n f(i) = θ(1) Bounded Tail:
246
Upper Extreme: ∑ i=1..n 1 / i 1.0001 = θ(1) f(n) n -1-Ω(1) ∑ i=1..n f(i) = θ(1) Bounded Tail:
247
Upper Extreme: ∑ i=1..n 1 / i 1.0001 = θ(1) No Lower Extreme: 2i2i ∑ i=1..n 2 2 = θ(1). 1 All functions in between. f(n) n -1-Ω(1) ∑ i=1..n f(i) = θ(1) Bounded Tail:
248
Bounded Tail If f(n) = c b an n d log e (n) c ? a ? b ? d ? e ? f(n) = Ω, θ ? then ∑ i=1..n f(i) = θ(1). > 0 (- , ) Conclusion or b 1 c n d log e (n) c a b b an
249
Bounded Tail If f(n) = c n d log e (n) c ? a b = 1 d ? e ? f(n) = Ω, θ ? then ∑ i=1..n f(i) = θ(1). n θ(1)-1 > 0 < -1 (- , ) Conclusion
250
Adding Made Easy Done
251
Adding Made Easy Missing Functions 1 / nlogn logn / n
252
Adding Made Easy Geometric Like: If f(n) 2 Ω(n), then ∑ i=1..n f(i) = θ(f(n)). Arithmetic Like: If f(n) = n θ(1)-1, then ∑ i=1..n f(i) = θ(n · f(n)). Harmonic: If f(n) = 1 / n, then ∑ i=1..n f(i) = log e n + θ(1). Bounded Tail: If f(n) n -1-Ω(1), then ∑ i=1..n f(i) = θ(1). ( For +, -, , , exp, log functions f(n) ) This may seem confusing, but it is really not. It should help you compute most sums easily.
253
Recurrence Relations T(1) = 1 T(n) = a T(n/b) + f(n)
254
Recurrence Relations Time of Recursive Program procedure Eg(int n) if(n 1) then put “Hi” else loop i=1..f(n) put “Hi” loop i=1..a Eg(n/b) Recurrence relations arise from the timing of recursive programs. Let T(n) be the # of “Hi”s on an input of “size” n.
255
procedure Eg(int n) if(n 1) then put “Hi” else loop i=1..f(n) put “Hi” loop i=1..a Eg(n/b) Given size 1, the program outputs T(1)=1 Hi’s. Recurrence Relations Time of Recursive Program
256
procedure Eg(int n) if(n 1) then put “Hi” else loop i=1..f(n) put “Hi” loop i=1..a Eg(n/b) Given size n, the stackframe outputs f(n) Hi’s. Recurrence Relations Time of Recursive Program
257
procedure Eg(int n) if(n 1) then put “Hi” else loop i=1..f(n) put “Hi” loop i=1..a Eg(n/b) Recursing on a instances of size n/b generates T(n/b) “Hi”s. Recurrence Relations Time of Recursive Program
258
procedure Eg(int n) if(n 1) then put “Hi” else loop i=1..f(n) put “Hi” loop i=1..a Eg(n/b) Recursing a times generates a·T(n/b) “Hi”s. Recurrence Relations Time of Recursive Program
259
procedure Eg(int n) if(n 1) then put “Hi” else loop i=1..f(n) put “Hi” loop i=1..a Eg(n/b) For a total of T(1) = 1 T(n) = a·T(n/b) + f(n) “Hi”s. Recurrence Relations Time of Recursive Program
260
Solving Technique 1 Guess and Verify Recurrence Relation: T(1) = 1 & T(n) = 4T(n/2) + n Guess: G(n) = 2n 2 – n Verify: Left Hand SideRight Hand Side T(1) = 2(1) 2 – 1 T(n) = 2n 2 – n 1 4T(n/2) + n = 4 [2( n / 2 ) 2 – ( n / 2 )] + n = 2n 2 – n
261
Recurrence Relation: T(1) = 1 & T(n) = 4T(n/2) + n Guess: G(n) = an 2 + bn + c Verify: Left Hand SideRight Hand Side T(1) = a+b+c T(n) = an 2 +bn+c 1 4T(n/2) + n = 4 [a ( n / 2 ) 2 + b ( n / 2 ) +c] + n = an 2 +(2b+1)n + 4c Solving Technique 2 Guess Form and Calculate Coefficients
262
Recurrence Relation: T(1) = 1 & T(n) = 4T(n/2) + n Guess: G(n) = an 2 + bn + 0 Verify: Left Hand SideRight Hand Side T(1) = a+b+c T(n) = an 2 +bn+c 1 4T(n/2) + n = 4 [a ( n / 2 ) 2 + b ( n / 2 ) +c] + n = an 2 +(2b+1)n + 4c Solving Technique 2 Guess Form and Calculate Coefficients c=4c c=0
263
Recurrence Relation: T(1) = 1 & T(n) = 4T(n/2) + n Guess: G(n) = an 2 - 1n + 0 Verify: Left Hand SideRight Hand Side T(1) = a+b+c T(n) = an 2 +bn+c 1 4T(n/2) + n = 4 [a ( n / 2 ) 2 + b ( n / 2 ) +c] + n = an 2 +(2b+1)n + 4c Solving Technique 2 Guess Form and Calculate Coefficients b=2b+1 b=-1
264
Recurrence Relation: T(1) = 1 & T(n) = 4T(n/2) + n Guess: G(n) = an 2 - 1n + 0 Verify: Left Hand SideRight Hand Side T(1) = a+b+c T(n) = an 2 +bn+c 1 4T(n/2) + n = 4 [a ( n / 2 ) 2 + b ( n / 2 ) +c] + n = an 2 +(2b+1)n + 4c Solving Technique 2 Guess Form and Calculate Coefficients a=a
265
Recurrence Relation: T(1) = 1 & T(n) = 4T(n/2) + n Guess: G(n) = 2n 2 - 1n + 0 Verify: Left Hand SideRight Hand Side T(1) = a+b+c T(n) = an 2 +bn+c 1 4T(n/2) + n = 4 [a ( n / 2 ) 2 + b ( n / 2 ) +c] + n = an 2 +(2b+1)n + 4c Solving Technique 2 Guess Form and Calculate Coefficients a+b+c=1 a-1+0=1 a=2
266
Recurrence Relation: T(1) = 1 & T(n) = aT(n/b) + f(n) Solving Technique 3 Approximate Form and Calculate Exponent which is bigger? Guess
267
Recurrence Relation: T(1) = 1 & T(n) = aT(n/b) + f(n) Guess: aT(n/b) << f(n) Simplify: T(n) f(n) Solving Technique 3 Calculate Exponent In this case, the answer is easy. T(n) = (f(n))
268
Recurrence Relation: T(1) = 1 & T(n) = aT(n/b) + f(n) Guess: aT(n/b) >> f(n) Simplify: T(n) aT(n/b) Solving Technique 3 Calculate Exponent In this case, the answer is harder.
269
Recurrence Relation: T(1) = 1 & T(n) = aT(n/b) Guess: G(n) = cn Verify: Left Hand SideRight Hand Side T(n) = cn aT(n/b) = a [c ( n / b ) ] = c a b n Solving Technique 3 Calculate Exponent ( log a / log b ) = cn 1 = a b - b = a log b = log a = log a / log b
270
Recurrence Relation: T(1) = 1 & T(n) = 4T(n/2) Guess: G(n) = cn Verify: Left Hand SideRight Hand Side T(n) = cn aT(n/b) + f(n) = c [a ( n / b ) ] = c a b n Solving Technique 3 Calculate Exponent 1 = a b - b = a log b = log a = log a / log b ( log a / log b ) = cn ( log 4 / log 2 ) = cn 2
271
Recurrence Relation: T(1) = 1 & T(n) = aT(n/b) + f(n) Solving Technique 3 Calculate Exponent If bigger then T(n) = (f(n)) If bigger then ( log a / log b ) T(n) = (n ) And if aT(n/b) f(n) what is T(n) then?
272
Technique 4: Decorate The Tree T(n) = a T(n/b) + f(n) f(n) T(n/b) T(n) = T(1) T(1) = 1 1 = a
273
f(n) T(n/b) T(n) = a
274
f(n) T(n/b) T(n) = a f(n/b) T(n/b 2 ) a
275
f(n) T(n) = a f(n/b) T(n/b 2 ) a f(n/b) T(n/b 2 ) a f(n/b) T(n/b 2 ) a f(n/b) T(n/b 2 ) a
276
11111111111111111111111111111111...... 111111111111111111111111111111111 f(n) T(n) = a f(n/b) T(n/b 2 ) a f(n/b) T(n/b 2 ) a f(n/b) T(n/b 2 ) a f(n/b) T(n/b 2 ) a
277
Evaluating: T(n) = aT(n/b)+f(n) Level 0 1 2 i h
278
Evaluating: T(n) = aT(n/b)+f(n) Level Instance size 0 1 2 i h
279
Evaluating: T(n) = aT(n/b)+f(n) Level Instance size 0n 1 2 i h
280
Evaluating: T(n) = aT(n/b)+f(n) Level Instance size 0n 1 n/b 2 i h
281
Evaluating: T(n) = aT(n/b)+f(n) Level Instance size 0n 1 n/b 2 n/b 2 i h
282
Evaluating: T(n) = aT(n/b)+f(n) Level Instance size 0n 1 n/b 2 n/b 2 i n/b i h n/b h
283
Evaluating: T(n) = aT(n/b)+f(n) Level Instance size 0n 1 n/b 2 n/b 2 i n/b i h n/b h
284
Evaluating: T(n) = aT(n/b)+f(n) Level Instance size 0n 1 n/b 2 n/b 2 i n/b i h n/b h = 1 base case
285
Evaluating: T(n) = aT(n/b)+f(n) Level Instance size 0n 1 n/b 2 n/b 2 i n/b i h n/b h = 1
286
Evaluating: T(n) = aT(n/b)+f(n) Level Instance size 0n 1 n/b 2 n/b 2 i n/b i h = log n / log b n/b h = 1 b h = n h log b = log n h = log n / log b
287
Evaluating: T(n) = aT(n/b)+f(n) Level Instance size Work in stack frame 0n 1 n/b 2 n/b 2 i n/b i h = log n / log b 1
288
Evaluating: T(n) = aT(n/b)+f(n) Level Instance size Work in stack frame 0n f(n) 1 n/bf(n/b) 2 n/b 2 f(n/b 2 ) i n/b i f(n/b i ) h = log n / log b 1T(1)
289
Evaluating: T(n) = aT(n/b)+f(n) Level Instance size Work in stack frame # stack frames 0n f(n) 1 n/bf(n/b) 2 n/b 2 f(n/b 2 ) i n/b i f(n/b i ) h = log n / log b n/b h T(1)
290
Evaluating: T(n) = aT(n/b)+f(n) Level Instance size Work in stack frame # stack frames 0n f(n) 1 1 n/bf(n/b) a 2 n/b 2 f(n/b 2 ) a2a2 i n/b i f(n/b i ) aiai h = log n / log b n/b h T(1) ahah
291
Evaluating: T(n) = aT(n/b)+f(n) Level Instance size Work in stack frame # stack frames 0n f(n) 1 1 n/bf(n/b) a 2 n/b 2 f(n/b 2 ) a2a2 i n/b i f(n/b i ) aiai h = log n / log b n/b h T(1) ahah
292
Evaluating: T(n) = aT(n/b)+f(n) Level Instance size Work in stack frame # stack frames 0n f(n) 1 1 n/bf(n/b) a 2 n/b 2 f(n/b 2 ) a2a2 i n/b i f(n/b i ) aiai h = log n / log b n/b h T(1) ahah a h = a = n log n / log b log a / log b
293
Evaluating: T(n) = aT(n/b)+f(n) Level Instance size Work in stack frame # stack frames Work in Level 0n f(n) 1 1 n/bf(n/b) a 2 n/b 2 f(n/b 2 ) a2a2 i n/b i f(n/b i ) aiai h = log n / log b n/b h T(1) n log a / log b
294
Evaluating: T(n) = aT(n/b)+f(n) Level Instance size Work in stack frame # stack frames Work in Level 0n f(n) 1 1 · f(n) 1 n/bf(n/b) a a · f(n/b) 2 n/b 2 f(n/b 2 ) a2a2 a 2 · f(n/b 2 ) i n/b i f(n/b i ) aiai a i · f(n/b i ) h = log n / log b n/b h T(1) n log a / log b n · T(1) log a / log b Total Work T(n) = ∑ i=0..h a i f(n/b i )
295
Evaluating: T(n) = aT(n/b)+f(n) = ∑ i=0..h a i f(n/b i ) If a Geometric Sum ∑ i=0..n x i θ(max(first term, last term))
296
Evaluating: T(n) = aT(n/b)+f(n) Level Instance size Work in stack frame # stack frames Work in Level 0n f(n) 1 1 · f(n) 1 n/bf(n/b) a a · f(n/b) 2 n/b 2 f(n/b 2 ) a2a2 a 2 · f(n/b 2 ) i n/b i f(n/b i ) aiai a i · f(n/b i ) h = log n / log b n/b h T(1) n log a / log b n · T(1) log a / log b Dominated by Top Level or Base Cases
297
Evaluating: T(n) = aT(n/b)+f(n) Is the sum Geometric? Simplify by letting f(n) = n c log k n T(n) = ∑ i=0..h a i f(n/b i ) = ∑ i=0..h a i (n/b i ) c log k (n/b i ) = n c ∑ i=0..h 2 [log a - c log b] · i log k (n/b i ) Geometrically IncreasingArithmetic SumGeometrically Decreasing Sum = θ(last term) = θ( ) Sum = θ(any term # terms) = θ(f(n) log n) Sum = θ(first term) = θ(f(n)). log a - c log b < 0log a - c log b = 0log a - c log b < 0 c < log a / log b c = log a / log b & k<-1 c = log a / log b & k>-1 c > log a / log b n log a / log b (n/..) c = n c a i = 2 [log a]·i (.. /b i ) c = 2 [-c log b]·i = n c ∑ i=0..h 2 -d i log k (n/b i )
298
Evaluating: T(n) = aT(n/b)+f(n) Is the sum Geometric? Simplify by letting f(n) = n c log k n T(n) = ∑ i=0..h a i f(n/b i ) = ∑ i=0..h a i (n/b i ) c log k (n/b i ) = n c ∑ i=0..h 2 [log a - c log b] · i log k (n/b i ) Geometrically IncreasingArithmetic SumGeometrically Decreasing Sum = θ(last term) = θ( ) Sum = θ(any term # terms) = θ(f(n) log n) Sum = θ(first term) = θ(f(n)). log a - c log b < 0log a - c log b = 0log a - c log b < 0 c < log a / log b c = log a / log b & k<-1 c = log a / log b & k>-1 c > log a / log b n log a / log b k =-1 log k ( n /b i ) = 1 / (logn - i logb) 1 / i (backwards) = n c ∑ i=0..h 2 0 i log k (n/b i ) (back wards) de
299
Evaluating: T(n) = aT(n/b)+f(n) Is the sum Geometric? Simplify by letting f(n) = n c log k n T(n) = ∑ i=0..h a i f(n/b i ) = ∑ i=0..h a i (n/b i ) c log k (n/b i ) = n c ∑ i=0..h 2 [log a - c log b] · i log k (n/b i ) Geometrically IncreasingArithmetic SumGeometrically Decreasing Sum = θ(last term) = θ( ) Sum = θ(any term # terms) = θ(f(n) log n) Sum = θ(first term) = θ(f(n)). log a - c log b < 0log a - c log b = 0log a - c log b < 0 c < log a / log b c = log a / log b & k<-1 c = log a / log b & k>-1 c > log a / log b n log a / log b = n c ∑ i=0..h 2 +d i log k (n/b i )
300
Evaluating: T(n) = 4T(n/2)+ n 3 / log 5 n
301
Time for top level?: Evaluating: T(n) = 4T(n/2)+ n 3 / log 5 n
302
Time for top level: f(n) = n 3 / log 5 n Time for base cases?: Evaluating: T(n) = 4T(n/2)+ n 3 / log 5 n
303
Time for top level: f(n) = n 3 / log 5 n Time for base cases: Evaluating: T(n) = 4T(n/2)+ n 3 / log 5 n θ(n ) = log a / log b θ(n ) log ? / log ?
304
Time for top level: f(n) = n 3 / log 5 n Time for base cases: Evaluating: T(n) = 4T(n/2)+ n 3 / log 5 n θ(n ) = log a / log b θ(n ) = ? log 4 / log 2
305
Time for top level: f(n) = n 3 / log 5 n Time for base cases: Dominated?: c = ? Evaluating: T(n) = 4T(n/2)+ n 3 / log 5 n θ(n ) = log a / log b θ(n ) = θ(n 2 ) log 4 / log 2 log a / log b = ?
306
Time for top level: f(n) = n 3 / log 5 n Time for base cases: Dominated?: c = 3 > 2 = log a / log b Evaluating: T(n) = 4T(n/2)+ n 3 / log 5 n θ(n ) = log a / log b θ(n ) = θ(n 2 ) log 4 / log 2 Hence, T(n) = ?
307
Time for top level: f(n) = n 3 / log 5 n Time for base cases: Dominated?: c = 3 > 2 = log a / log b Evaluating: T(n) = 4T(n/2)+ n 3 / log 5 n θ(n ) = log a / log b θ(n ) = θ(n 2 ) log 4 / log 2 Hence, T(n) = θ(top) = θ(f(n)) = θ(n 3 / log 5 n ).
308
Time for top level: f(n) = 2 n Time for base cases: Dominated?: c = ? > 2 = log a / log b Evaluating: T(n) = 4T(n/2)+ 2 n θ(n ) = log a / log b θ(n ) = θ(n 2 ) log 4 / log 2 Hence, T(n) = θ(top) = θ(f(n)) = θ(2 n ). bigger >big The time is even more dominated by the top level of recursion
309
Time for top level: f(n) = n log 5 n Time for base cases: Dominated?: c = ? 2 = log a / log b Evaluating: T(n) = 4T(n/2)+ n log 5 n θ(n ) = log a / log b θ(n ) = θ(n 2 ) log 4 / log 2 Hence, T(n) = ? 1< = θ(base cases) = θ(n ) = θ(n 2 ). log a / log b
310
Time for top level: f(n) = log 5 n Time for base cases: Dominated?: c = ? 2 = log a / log b Evaluating: T(n) = 4T(n/2)+ log 5 n θ(n ) = log a / log b θ(n ) = θ(n 2 ) log 4 / log 2 Hence, T(n) = ? 0< = θ(base cases) = θ(n ) = θ(n 2 ). log a / log b
311
Time for top level: f(n) = n 2 Time for base cases: Dominated?: c = ? 2 = log a / log b Evaluating: T(n) = 4T(n/2)+ n 2 θ(n ) = log a / log b θ(n ) = θ(n 2 ) log 4 / log 2 Hence, T(n) = ? 2= = θ(f(n) log(n) ) = θ(n 2 log(n) ).
312
Time for top level: f(n) = n 2 log 5 n Time for base cases: Dominated?: c = 2 = 2 = log a / log b Evaluating: T(n) = 4T(n/2)+ n 2 log 5 n θ(n ) = log a / log b θ(n ) = θ(n 2 ) log 4 / log 2 k = ? 5 ? Hence, T(n) = ? > -1 = θ(f(n) log(n) ) = θ(n 2 log 6 (n) ).
313
Time for top level: f(n) = n 2 / log 5 n Time for base cases: Dominated?: c = 2 = 2 = log a / log b Evaluating: T(n) = 4T(n/2)+ n 2 / log 5 n θ(n ) = log a / log b θ(n ) = θ(n 2 ) log 4 / log 2 k = ? Hence, T(n) = ? -5 ?< -1 = θ(base cases) = θ(n ) = θ(n 2 ). log a / log b
314
Time for top level: f(n) = n 2 / log n Time for base cases: Dominated?: c = 2 = 2 = log a / log b Evaluating: T(n) = 4T(n/2)+ n 2 / log n θ(n ) = log a / log b θ(n ) = θ(n 2 ) log 4 / log 2 k = ? Hence, T(n) = ? -1 ?= -1 = θ(n c loglog n ) = θ(n 2 loglog n ). Did not do before.
315
Sufficiently close to: T(n) = 4T(n/2)+ n 3 = θ(n 3 ). T 2 (n) = ? Evaluating: T 2 (n) = 4 T 2 (n/2+n 1/2 )+ n 3 θ(n 3 ).
316
Evaluating: T(n) = aT(n-b)+f(n) h = ? n-hb n-ib n-2b n-b T(0) f(n-ib) f(n-2b) f(n-b) f(n) n Work in Level # stack frames Work in stack frame Instance size a aiai a2a2 a 1 n/bn/b a · T(0) a i · f(n-ib) a 2 · f(n-2b) a · f(n-b) 1 · f(n) n/bn/b |base case| = 0 = n-hb h = n / b i 2 1 0 Level Likely dominated by base cases Exponential
317
Evaluating: T(n) = 1T(n-b)+f(n) h = ? Work in Level # stack frames Work in stack frame Instance size 1 1 1 1 1 f(0) f(n-ib) f(n-2b) f(n-b) f(n) n-b n n-hb n-ib n-2b T(0) f(n-ib) f(n-2b) f(n-b) f(n) h = n / b i 2 1 0 Level Total Work T(n) = ∑ i=0..h f(b·i) = θ(f(n)) or θ(n · f(n))
318
End Restart Relevant Mathematics Iterative Algorithms
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.